Here we show an example of how our method distinguish unique movements against erroneous. Please check the video here.
Here we show comparison examples to (a) Feng et al. [FJX*15], (b) Holden et al. [HSKJ15], (c) Burke and Lasenby [BL16], and (d) Gløersen and Federolf [GF16]. Please check the contemporary dance, the salsa dance, and the locomotion examples.
[BL16] BURKE M., LASENBY J.: Estimating missing marker positions using low dimensional kalman smoothing. Journal of Biomechanics 49, 9 (2016), 1854–1858.
[FJX*15] FENG Y., JI M., XIAO J., YANG X., ZHANG J. J., ZHUANG Y., LI X.: Mining spatial-temporal patterns and structural sparsity for human motion data denoising. IEEE Transactions on Cybernetics 45, 12 (Dec 2015), 2693–2706.
[GF16] GLØERSEN Ø., FEDEROLF P.: Predicting missing marker trajectories in human motion data using marker intercorrelations. PLOS ONE 11, 3 (2016), 1–14.
[HSKJ15] HOLDEN D., SAITO J., KOMURA T., JOYCE T.: Learning motion manifolds with convolutional autoencoders. In SIGGRAPH Asia 2015 Technical Briefs (New York, NY, USA, 2015), SA ’15, ACM, pp. 18:1–18:4