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Abstract

This thesis focuses on the problem of determining appropriate skeletal configurations for which

a virtual animated character moves to desired positions as smoothly, rapidly, and as accurately

as possible. During the last decades, several methods and techniques, sophisticated or heuris-

tic, have been presented to produce smooth and natural solutions to the Inverse Kinematics

(IK) problem. However, many of the currently available methods suffer from high computa-

tional cost and production of unrealistic poses. In this study, a novel heuristic method, called

Forward And Backward Reaching Inverse Kinematics (FABRIK), is proposed, which returns

visually natural poses in real-time, equally comparable with highly sophisticated approaches.

It is capable of supporting constraints for most of the known joint types and it can be extended

to solve problems with multiple end effectors, multiple targets and closed loops. FABRIK was

compared against the most popular IK approaches and evaluated in terms of its robustness and

performance limitations. This thesis also includes a robust methodology for marker prediction

under multiple marker occlusion for extended time periods, in order to drive real-time cen-

tre of rotation (CoR) estimations. Inferred information from neighbouring markers has been

utilised, assuming that the inter-marker distances remain constant over time. This is the first

time where the useful information about the missing markers positions which are partially vis-

ible to a single camera is deployed. Experiments demonstrate that the proposed methodology

can effectively track the occluded markers with high accuracy, even if the occlusion persists

for extended periods of time, recovering in real-time good estimates of the true joint positions.

In addition, the predicted positions of the joints were further improved by employing FAB-

RIK to relocate their positions and ensure a fixed bone length over time. Our methodology is

tested against some of the most popular methods for marker prediction and the results confirm

that our approach outperforms these methods in estimating both marker and CoR positions.

Finally, an efficient model for real-time hand tracking and reconstruction that requires a mini-

mum number of available markers, one on each finger, is presented. The proposed hand model

is highly constrained with joint rotational and orientational constraints, restricting the fingers

and palm movements to an appropriate feasible set. FABRIK is then incorporated to estimate

the remaining joint positions and to fit them to the hand model. Physiological constraints, such

as inertia, abduction, flexion etc, are also incorporated to correct the final hand posture. A

mesh deformation algorithm is then applied to visualise the movements of the underlying hand
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skeleton for comparison with the true hand poses. The mathematical framework used for de-

scribing and implementing the techniques discussed within this thesis is Conformal Geometric

Algebra (CGA).
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Filter, Marker prediction, Motion Capture, Physiological constraints, Variable Turn Model.
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1
Introduction

T his thesis addresses the problem of manipulating articulated figures in an interactive

and intuitive fashion for the design and control of their posture. It finds applications

in the areas of robotics, computer animation, ergonomics and the computer games industry.

A novel heuristic method, called FABRIK, is proposed, which solves the Inverse Kinematics

problem in real-time and returns visually natural poses comparable with more complex and

highly sophisticated approaches. We also derive a robust methodology for marker prediction

under multiple marker occlusion for extended time periods, in order to drive real-time centre

of rotation (CoR) estimations. Finally, an efficient real-time hand pose tracker is presented,

using optical motion capture data. Physiological constraints are incorporated allowing motion

within an anatomically feasible set.

1.1. Introduction and Motivation

In computer graphics, articulated figures are a convenient model for humans, animals or other

virtual creatures found commonly in films and video games. The most popular method for ani-

mating such models is motion-capture; however, despite the availability of highly sophisticated

techniques and expensive tools, many problems appear when dealing with complex figures.

Most virtual character models are complicated; they are made up of many joints having a

high number of degrees of freedom. Thus, it is often difficult to produce a realistic character

animation.

1
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A posture is defined as the skeletal configuration of a figure; for a realistic posture a set

of criteria should be satisfied: all character models have natural articulation limits and inter-

penetration of the body with other objects or themselves is not permitted. In addition, physical

laws should be considered as well as numerous personal factors. General constraints can be

applied to most articulated figures, however special cases of posture control are needed when

a large number of degrees of freedom exists.

Inverse Kinematics (IK) is a method for computing the posture via estimating each indi-

vidual degree of freedom in order to satisfy a given task; it plays an important role in the

computer animation and simulation of articulated figures. Inverse Kinematics finds applica-

tions in several areas; IK methods have been implemented in many computer graphics and

robotics applications, aiming to animate or control different virtual creatures. They are also

very popular in the video games industry. The field of computer-aided ergonomics is also

concerned with articulated figures, especially human models developed for simulation and pre-

diction purposes. The need for accurate biomechanical modelling and body sizing based on

anthropometric data make IK methods a popular approach for fast and reliable solutions.

In this work, the most popular Inverse Kinematics techniques are reviewed. A new heuristic

iterative method, FABRIK, is also presented for solving the IK problem in different scenarios.

FABRIK (Forward And Backward Reaching Inverse Kinematics) is an efficient method for

solving the IK problem; it uses a forward and backward iterative approach, finding each joint

position via locating a point on line. FABRIK is easy to implement and has been utilised

in highly complex systems with single and multiple targets, with and without joint restric-

tions. It can easily handle end effector orientations and support, to the best of our knowledge,

all chain classes. A reliable method for incorporating constraints is also presented and used

within FABRIK. The proposed method retains all the advantages of FABRIK, producing vi-

sually smooth movements without oscillations and discontinuities, with low computational

cost. Several experiments have been implemented for the sake of comparison between the

most popular manipulator solvers, including multiple end effectors with multiple tasks, and

highly constrained joints. The algorithms are tested for reliability, computational cost, realistic

movement, reconstruction quality, conversion criteria and number of iterations needed.

Inverse Kinematics solvers are very popular in the robotics, computer graphics and animation

communities; they are extensively used to control and animate legged figures or articulated

robots. The most popular method used to extract accurate data and animate such models is

motion capture. Optical motion capture is a technology used to turn the observations of a

moving subject (taken from a number of cameras) into 3D position and orientation information

about that subject. Such information can be used for the following applications: to better

analyse techniques in sports training and performance (e.g. posture, velocities, accelerations,

angles, trajectories) [HNT+06, Gol]; to study human movements for medical reasons; to observe

asymmetries and abnormalities in rehabilitation medicine (e.g. gait in stroke or prosthetic

patients) [HDSB05, PTP+05, BSR07]; in the generation of virtual characters for films or

computer games [Men99] and for human-computer interactions (HCI), including interaction

with game consoles. IK has recently also been adopted in protein science for protein structure
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prediction and reconstruction [CD03]. There are two basic approaches used to capture such

data, markered and markerless. Throughout this work, markered motion capture is used. The

problem of establishing the motion of interest is simplified by attaching markers of some type

to the subject being recorded. These markers can then be easily located in an image and

their movement can be used to infer the complete movement of the person to whom they are

attached.

In general, to achieve accurate skeletal reconstruction of any legged body, three markers

must be available on each limb segment at all times. However, even with many cameras, there

are instances where occlusion of markers by elements of the scene leads to missing data. In

order to establish its position without ambiguity, each marker must be visible to at least two

cameras in each frame. Although many methods have been developed to handle the missing

marker problem, most of them are not real-time, are usually limited to short time period

occlusions and often require manual intervention.

In this thesis, we investigate methodologies for real-time marker prediction, under multiple

cases of occlusion, to drive centre of rotation (CoR) estimates and then to automatically es-

tablish the skeleton model. A real-time integrated framework is presented, which predicts the

occluded marker positions using a variable turn model within an Unscented Kalman filter. The

previous marker positions are used within the framework in addition to information related to

the missing markers of the current frame, inferred from an approximate rigid body assump-

tion. The predicted marker positions are then used to locate the joints. Without assuming

any skeleton model, we take advantage of the fact that for markers on a given limb segment,

the inter-marker distance is approximately constant. The proposed marker constraint method-

ology is simple, real-time implementable and very efficient. It can deal with all the cases of

marker occlusion within a limb, resulting in accurate predictions even when all markers on a

limb segment are missing for an extended period of time. The proposed approach also takes

advantage of the special, but common, case where missing markers are still visible to one cam-

era. With a continuous stream of accurate labelled 3D data, we can perform real-time CoR

estimation; the CoR position is thereafter corrected via a real-time Inverse Kinematic tech-

nique (FABRIK) which ensures that the inter-joint pairwise distances remain constant over

time. A skeletal reconstruction is thereby achieved, producing information which can be used

for visual performance feedback. Experiments demonstrate that our methodology effectively

recovers good estimates of the true positions of the missing markers and CoRs, even if all the

markers on a limb are occluded for a long period of time. The resulting motion is natural and

smooth, and can be achieved in real-time.

In recent years there has been a growing demand for reliable hand motion tracking systems,

a technology used to turn the observations of a moving hand into 3D position and orientation

information. However, building a fast and effective hand pose tracker remains challenging; the

high dimensionality of the pose space, the ambiguities due to self-occlusions and the significant

appearance variations due to shading make efficient tracking difficult. Marker-based motion

capture has been demonstrated in several interactive systems (including but not limited to

hand interaction); the results are highly accurate and easy to configure. There are, however,
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instances where we do not have many markers available or it is impossible to attach three

markers on each limb segment; the large number of markers needed is often prohibitive. It

may therefore be infeasible to track the object and reconstruct its skeletal model (i.e. the hand

model). A new way of capturing the movement of these articulated models is therefore required,

using the minimum possible number of markers. Instead of attaching three markers on each

limb segment, we investigate a system in which a single marker is attached and captured on

each finger (end effector), one marker at the chain base (root) and two markers at strategic

positions to help us define the hand orientation. The markers’ positions are tracked using an

optical motion capture system, such as [Pha]. However, prior knowledge about the geometry

of the hand, the hand model and the restrictions of each joint are needed. Joint constraints are

applied to ensure that finger motion is within a feasible set, giving a visually natural motion of

the hand. An Inverse Kinematics solver (FABRIK) is incorporated to estimate the remaining

joint positions and to fit them to the hand model. Physiological constraints related to the

hand anatomy are then enforced to restrict the motion only to natural possible poses, without

violating any model constraint. Finally, a mesh deformation algorithm has been applied to

drive the animation of the underlying hand skeleton using a set of per-bone weights. The

implemented mesh videos are compared with their true hand motions and the results verify

that the suggested method is effective; the method is real-time implementable and tracks the

hand motion smoothly, without oscillations, even with a low capture frame rate.

1.2. Literature Review

The area of inverse kinematics has been extensively studied during the last decades. In this

literature review we present the most popular methods which solve the IK problem and

compute the poses of a manipulator. A joint localisation review is also given in addition to

methods for marker prediction and centre of rotation estimation. We conclude this section

with a review of recent hand pose tracking methods. Note that this section is not meant as

an exhaustive literature review but rather a brief outline of the background literature. A

more detailed review can be found separately in each chapter, dealing with the relevant subject.

Inverse Kinematics review: The production of realistic and plausible motions posed a

problem for scholars for many years in the field of robotics technology and computer graph-

ics. During recent decades, several models have been implemented for solving the IK problem

from many different areas of study. [ZB94] treats the IK task as a problem of finding a local

minimum of a set of non-linear equations, defining Cartesian space constraints. However, the

most popular numerical approach is to use the Jacobian matrix to find a linear approxima-

tion to the IK problem. The Jacobian solutions linearly model the end effectors’ movements

relative to instantaneous system changes in link translation and joint angle. Several different

methodologies have been presented for calculating or approximating the Jacobian inverse, such

as the Jacobian Transpose, Damped Least Squares (DLS), Damped Least Squares with Singu-

lar Value Decomposition (SVD-DLS), Selectively Damped Least Squares (SDLS) and several
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extensions [BDMS84, WE84, Bai85, Wam86, NH86, BK05]. Jacobian inverse solutions pro-

duce smooth postures; however most of these approaches suffer from high computational cost,

complex matrix calculations and singularity problems. An alternative approach is given by

Pechev in [Pec08] where the inverse kinematics problem is solved from a control prospective.

This approach is computationally more efficient than the pseudo-inverse based methods and

does not suffer from singularity problems.

The second family of IK solvers is based on Newton methods. These algorithms seek target

configurations which are posed as solutions to a minimisation problem, hence they return

smooth motion without erratic discontinuities. The most well known methods are Broyden’s

method, Powell’s method and the Broyden, Fletcher, Goldfarb and Shanno (BFGS) method,

see [Fle87] for a detailed review. However, the Newton methods are complex, difficult to

implement and have high computational cost per iteration.

A very popular IK method is the Cyclic Coordinate Descent (CCD) algorithm, which was

first introduced by [WC91] and then biomechanically constrained by [Wel93]. CCD has been

extensively used in the computer games industry [Lan98] and has recently been adapted for pro-

tein structure prediction [CD03]. CCD is a heuristic iterative method with low computational

cost for each joint per iteration, which can solve the IK problem without matrix manipula-

tions; thus it formulates a solution very quickly. However, CCD has some disadvantages; it can

suffer from unrealistic animation, even if manipulator constraints have been added, and often

produces motion with erratic discontinuities. It is designed to handle serial chains, thus, it is

difficult to extend to problems with multiple end effectors. [UPBS08] describes a Sequential

IK solver (SIK), which is a direct extension of [BVU+06], in that its inputs are end effector

positions, such as wrists, ankles, head and pelvis, which are used to find the human pose. The

IK problem is then solved sequentially using simple analytic-iterative IK algorithms (CCD),

in different parts of the body, in a specific order. [KM05] also adopted the CCD kinematic

algorithm and solved its crucial problem of resulting unnatural poses. The proposed extension

in [KM05] is able to solve problems with humanoid hierarchy, dividing the whole body into

groups of joints near an end effector (typically head, trunk, arms and legs). In order to sat-

isfy the desired centre of mass, the lightest group moves first, adjusting its centre of mass by

changing the length of the limb and rotating it (assuming it is a rigid body).

Recently, [CA08] and [HRE+08] proposed a Sequential Monte Carlo Method (SMCM) and

particle filtering approach respectively. The proposed particle IK solver treats the character

skeleton as a set of 3 degrees of freedom (DoF) particles having inter-length constraints. An

iterative constrainer, with various pre-conditions and parameters, is then applied over the

particles, tuning its behavior both statically and dynamically. The final particle positions and

the length constraints are then used to reconstruct the resulting DoF of the body. Neither

method suffers from matrix singularity problems and both perform reasonably well. However,

these statistical methods have high computational cost. [GMHP04] presents a style-based IK

method which is based on a learned model of human poses. Given a set of constraints, the

proposed system can produce, in real-time, the most likely pose satisfying those constraints.

The model has been trained on different input data that leads to different styles of IK; it can
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generate any pose, but poses are highly correlated with similar poses in the training data.

In [SZGP05, DSP06], the authors used mesh-based IK techniques to configure the animated

shapes. Mesh-based IK learns a space of natural deformations from example meshes. Using

the learned space, they generate new shapes that respect the deformations exhibited by the

examples, and satisfy vertex constraints imposed by the user. However, these methods require

an off-line training procedure, their results are highly dependent on the training data and

limited only to those models and movements on which the system has been trained. A detailed

explanation of all these methods is given in chapter 3.2.

[BLM04] present a real-time method which uses a ‘Follow-the-Leader’ (FTL) non-iterative

technique which is similar to each individual iteration of FABRIK. FTL was specifically de-

signed for rope simulation and has neither been used for IK solutions nor extended so that it

can function as an IK solver. FTL does not use points and lines to estimate joint positions,

does not work in an iterative fashion and manipulates the kinematic chain (ball-and-socket

joints connected by rigid links) taking into account only that the end effector should move to

a desired position. Although similar to FABRIK in its basic structure, the FTL algorithm has

not been extended to support joint constraints and orientations (these are largely superfluous

in rope simulation), nor has it been applied to cases where multiple end effectors exist.

Inverse Kinematics is a method for manipulating articulated figures in an interactive and

intuitive fashion for the design and control of their postures. However, in order to apply IK

techniques for motion and body reconstruction, a joint localisation approach is needed to

generate the CoRs and automatically establish legged skeletons from optical motion capture

data.

Joint Localisation review: Many papers have focused on methods for localisation of the

CoR. Sphere fitting approaches are the most commonly used methods for calculating the CoR.

This group of methods assumes that all markers remain a constant distance from the centre of

rotation. In [SPB+98], the Levenberg-Marquardt method is used to optimise the CoR location

and the radii of the marker spheres, via a cost function which sums a per marker cost over all

markers and all frames. Halvorsen et al. describe a closed form solution using the geometric

properties of the sphere [HLL99]. In [GL02], Gamage and Lasenby also introduce a closed form

solution, using a cost function of the squared differences in the squared distance from the CoR

to a marker and the radius of the sphere associated with that marker. An alternative approach

provided by Halvorsen, [Hal03], gives a Bayesian analysis of the algorithm of [GL02], providing

a first order approximation of the effect of isotropic Gaussian noise upon the algorithm.

Another group of methods is that termed Transformational techniques; they assume that

markers are rigidly attached to limb segments. Such an approach was implemented in [Hol91],

[OBBH00] and [ETDH06], where the limb orientation was obtained from sets of optical

markers. In [CL05], a sequential algorithm was presented to locate the rotation centres of a

human skeleton from marker data assuming that all markers are attached to a rigid body.

The method is closed form, thus enabling real-time implementation.
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Marker prediction and CoR estimation review: Whilst several methods to estimate

the location of missing markers have been proposed, the performance of most is unsatisfactory

in the presence of unusual motions or of many contiguous occlusion-affected frames. Indeed,

there are instances, even with expensive motion capture systems, where occlusion of markers by

elements of the scene leads to missing data. Several methods have been proposed to predict the

occluded markers in order to drive CoR estimation and skeletal reconstruction. Interpolation

of the data using linear or non-linear approaches is commonly used [WH97, RCB98]; this can

produce accurate results, but it is a post-processing technique requiring data prior to and after

the occlusion. Recently, [PLH+09] presented an extrapolation algorithm which assumes that

the most common motion behaviors are circular or linear movements; however, this method can

produce reliable predictions only for a limited number of occluded frames. While the discarding

of frames with missing markers is another common technique, the omission of specific data could

lead to the loss of useful information. Long-running occlusions leading to a large sequence of

missing data can also cause complete failure of the system.

In [RM06], Rhijn and Mulder proposed a model-based optical tracking and model estimation

system for composite interaction devices; however, it is an off-line procedure unsuitable for real-

time applications. Dorfmüller in [DU03] used an extended Kalman filter (EKF) to predict the

missing markers using previously available marker information, while Welch et al. in [WBV+99]

used an EKF to resolve occlusions based on the skeletal model of the tracked person. Tak and

Ko, [TK05], employed an Unscented Kalman Filter to ensure motion capture data remains

in a feasible set. These methods require manual intervention or become ineffective in cases

where markers are missing for an extended period of time. In our earlier work in [ACL08], we

presented an EKF method using a constant velocity (CV) model with marker constraints from

neighbouring1 markers. However, the CV model (2nd order Kalman Filter (KF)) limits its use

to problems with constant marker velocity. These methods also do not take into consideration

the fact that bones are rigid, thus the inter-joint pairwise distances remain constant over time.

Herda et al., in [HFP+00] and [HFP+01], used a post-processing approach to increase the

robustness of a motion capture system by using a sophisticated human model. The neighbour-

ing markers that share kinematic relations with the occluded markers were used to help the

estimation of the missing markers. However, the skeleton information must be known a priori

in order to apply this method. [HSD05] also takes advantage of the fact that the markers on a

limb have fixed inter-marker pairwise distances. This approach may become ineffective when

all or a significant number of markers are missing so that no information on that limb can be

inferred from the available neighbouring markers. Ringer and Lasenby, [RL02], also present an

automatic method to identify indistinguishable markers based on cliques2. However, this re-

quires an off-line procedure in order to determine marker cliques and parameters of the skeletal

structure.

In [GMHP04], a style-based inverse kinematic method has been developed where a Gaussian

1Neighbours are the markers belonging to the same limb segment.
2Markers in a clique have constant distances between each other.
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Process Latent Variable Model (GPLVM) was used along with a pre-specified kinematic model.

Although it is a real-time processing method, it requires knowledge of skeleton information,

which severely restricts its use. Chai and Hodgins, [CH05], present a method that uses the

neighbouring markers to estimate the missing marker in the current frame. They propose a

local linear model from these neighbours and then reconstruct the full pose of the frame by

conducting an optimisation in the space constrained by the model. Yu et al., in [YLD07],

proposed an online motion capture labelling approach which also recovers missing markers.

They cluster the markers into a number of rigid bodies based on the standard deviations of the

marker-pair distances. If their fitting-rigid-bodies algorithm did not classify all the markers into

rigid bodies, a missing marker auto-recovery method is applied assuming that the inter-marker

distances are fixed over time. However, a training session is needed for the fitting-rigid-bodies

algorithm, the auto-recovery method for marker estimation does not take into account the limb

segment rotation, no information about markers visible to a single camera is considered and

the CoR estimation is not investigated under marker occlusions.

Recently, Liu et al., in [LZWM06, LM06], presented a piecewise linear approach for

estimating human motions from a pre-selected set of informative markers (principal markers).

A pre-trained classifier identifies an appropriate local linear model for each frame. Missing

markers are then recovered using available marker positions and the principal components

of the associated model. However, this data-driven family of methods requires an off-line

training procedure and the results are highly dependent on training data and limited to those

models and movements the system has been trained on. An extended literature review of

these methods is also given in 4.3.

Hand tracking and reconstruction review: There are many approaches for tracking

and configuring the hand model. The hand gesture identification algorithms can be classified

into 2 major classes: glove-based and vision-based methods. In general, glove-based methods

are real-time, however they are expensive (e.g. P5 Data glove) and only detect limited finger

movements with low accuracy. Wang and Popovic [WP09] and Fredriksson et al [FRF08]

proposed methods for hand tracking using a single camera and an ordinary cloth glove which

was imprinted with a custom pattern; while this offers a simple, computationally cheap and

promising solution, it is still not as reliable as the optical mocap systems. The vision-based

methods, on the other hand, are more accurate but they have problems with occlusions, noise

and spurious data. Lien and Huang [LH98] proposed a hand model together with a closed-

form Inverse Kinematics solution for the finger fitting process. The 3D positions of the markers

were obtained using colour markers and stereo vision, and the finger poses were chosen using

a search method which finds the best solution amongst all possible positions. While this

method is implementable in real-time, it is complex and can fail when different size models are

used. De la Gorce et al [GPF08] also proposed a 3D hand tracking approach from monocular

video. Stenger et al [SMC01, STTC06] proposed statistical methods, such as an Unscented

Kalman Filter and a Hierarchical Bayesian Filter, to track hand motion. Such methods are
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still far from real-time thus limiting their use. Kaimakis and Lasenby [KL07] used a set of

pre-calibrated cameras to extract the hand’s silhouette as a visual cue. The 2D silhouette

data is then modelled as a conic field and physiological constraints are imposed to improve the

reliability of the hand tracking [KL09]. A more detailed literature review of hand tracking and

reconstruction methods is given in section 5.2.

1.3. Outline of the Thesis

The body of this thesis may be broadly divided into 4 main parts, each of which is described

in chapters 2 to 5. The first part describes the mathematical and experimental framework.

Within this first part, chapter 2 gives a brief introduction to Geometric Algebra (GA) and

to those aspects of GA that have been used within this thesis. We briefly outline Conformal

Geometric Algebra (CGA) and examine how the Conformal Model can represent geometric

primitives such as points, lines, circles, planes and spheres.

The second part introduces the Inverse Kinematics (IK) problem and discusses the most pop-

ular recent IK techniques. It briefly describes the advantages and disadvantages of each family

of methods including Inverse Jacobian methods, Newton methods, Sequential Monte Carlo

Methods and heuristic methods. Many of the currently available methods suffer from high

computational cost and production of unrealistic poses. Chapter 3 presents a novel heuristic

approach, called Forward And Backward Reaching Inverse Kinematics (FABRIK), which solves

the IK problem in an iterative fashion. FABRIK avoids the use of rotational angles or ma-

trices, and instead finds each joint position via locating a point on a line. Thus, it converges

in fewer iterations and has low computational cost while producing visually realistic poses.

FABRIK has been compared against the most popular manipulator solvers under several con-

ditions, including multiple end effectors with multiple tasks, and highly constrained joints. The

algorithms are tested for reliability, computational cost, realistic movements, reconstruction

quality, conversion criteria and number of iterations needed.

The third part concerns the problem of fitting skeletal models to marker-based optical motion

capture data. Section 4.4, studies the problem of estimating the centres of rotation (CoR)

between every pair of limb segments and identifying the optimal skeleton in real-time. We

present an efficient and accurate method for finding the rotors between 2 sets of vectors,

and then we calculate the CoR by taking advantage of the approximation that all markers

on a segment are attached to a rigid body. Part 3 also presents an integrated framework

which predicts the occluded marker position and thereby maintains a continuous flow of data.

Marker occlusion is a common phenomenon in motion capture systems due to camera system

failure or marker occlusion by other limbs. In detail, section 4.2 describes the experimental

environment including the cameras used for the experiments, the association between the

markers and the limbs, and the clustering of markers into groups corresponding to the limb

segments to which they are attached. Section 4.5 presents a real-time predicting approach

using a variable turn model within an Unscented Kalman filter, in combination with inferred

information from neighbouring markers in order to fill in the missing data when markers are
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occluded. This approach takes advantage of the fact that markers located on the same limb

of an articulated body have constant inter-marker distance and presents marker prediction

solutions under 5 different scenarios; the proposed marker constraints are efficient, simple

and real-time implementable. This work also imposes the common case that missing markers

are often visible to only a single camera, resulting in more accurate predictions. Section 4.7

describes how the FABRIK Inverse Kinematics solver can be incorporated into the marker

prediction and centre of rotation problem, re-positioning the joint locations in such a manner

that the inter-joint distances remain constant over time. Finally, section 4.8 shows comparisons

of the proposed methodology against some of the most popular methods for marker prediction

and the results confirm that our approach outperforms these methods in estimating both

marker and CoR positions in terms of absolute error and computational cost.

The last part of the thesis describes a sophisticated hand model approach for real-time

tracking and reconstruction. It presents a simple and efficient methodology for tracking and

reconstructing 3D hand poses using a markered optical motion capture system. It is an ex-

perimental use of the IK solver presented in Chapter 3, and the marker prediction technique

described in Chapter 4. Markers were positioned at strategic points, and FABRIK was incor-

porated to fit the rest of the joints to the hand model. The model is highly constrained with

rotational and orientational constraints, allowing only natural finger motion. The hand model

movements are also restricted by physiological constraints, allowing motion only to positions

within an anatomically feasible set. In addition, a marker prediction system, similar to the

one presented in Chapter 4, is applied to deal with cases where the markers are not visible to

the motion capture cameras. The results were visualised using a mesh deformation algorithm,

driving the animation of the hand according to the underlying hand skeleton. The method is

real-time implementable and tracks the hand motion smoothly and without oscillations, even

with a low capture frame rate.

In Chapter 6 we conclude with some final remarks and propose directions for future work.

Finally, in the Appendices we give the Geometric Algebra derivations for most of the imple-

mented methods.



2
Mathematical Background

T hroughout this chapter, we present a brief overview of Geometric Algebra (GA) in

order to provide explanations of those elements used within this thesis. GA provides

a convenient mathematical notation for representing orientations and rotations of objects in

three dimensions. The Conformal model of GA give us the ability to describe algorithms in a

geometrically intuitive and compact manner since basic entities, such as spheres, lines, planes

and circles, are simply represented by algebraic objects. GA is also more numerically stable and

more efficient than rotation matrices making it popular for applications in computer graphics

and robotics. More detailed treatment of geometric algebra can be found in [DL03].

2.1. Geometric Algebra

Classical vector algebra has a number of problems when we move from three dimensional

space (Euclidean) to higher dimensional space. Hence, Hermann Grassmann (1809-77) and

William Clifford (1845-79), attempted to create an ‘algebra of vectors’ in order to generalise

conventional vector algebra to higher dimensions. The modern day extension of this work is

now known as ‘Geometric Algebra’.

2.1.1. The products

The geometric product is the most fundamental product of Geometric Algebra. However, it is

often useful first to define the inner and outer products for vectors and then to introduce the

11
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geometric product of vectors.

The inner product

A vector space alone is insufficient for describing Euclidean geometry as it lacks the concepts of

distance and angles. Distances and angles are important in order to define entities like circles

or perpendicular lines. Both can be defined through the introduction of a scalar product

between vectors. This is known as the inner product, is written as a · b and returns a scalar.

In Euclidean space the scalar product is always positive,

a2 = a · a > 0 ∀ a ̸= 0 (2.1)

Thus, the length of a vector |a| can be defined as:

|a| =
√

(a · a) (2.2)

Hence, the inner product between a and b is defined via

a · b = |a||b| cos(θ) (2.3)

where θ is the angle between the vectors. The inner product can be also defined for higher

dimensional generalisations of the vector (multivectors).

The outer product

a

b

θ

a ∧ b

a

b

θ

b ∧ a

Figure 2.1.: The outer product. The outer or wedge product of a and b returns a directed area
element of area |a||b| sin(θ).

The major failure of the cross product is that exists only in 3 dimensions. In 2D there is

nowhere else to go, whereas in more than 3 dimensions this direction is not uniquely defined.

The solution of this problem was solved by Grassmann ([Gra62]) encoding a plane geometri-

cally, without relying on the notion of a vector perpendicular to it. Grassmann introduced a

key feature of GA namely the outer or exterior product, which is written as a ∧ b. Unlike the

cross product, which results in a perpendicular vector, the outer product of a pair of vectors

results in a directed area, as shown in figure 2.1. This is the directed area swept out by a and
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b and can be visualised as the parallelogram obtained by sweeping one vector along the other.

Changing the order of the vectors reverses the orientation of the plane. The plane has area

|a||b| sin(θ), which is defined to be the magnitude of a ∧ b.

The outer product has the following key properties:

• The outer product of vectors is antisymmetric

a ∧ b = −b ∧ a (2.4)

It follows that a ∧ a = 0.

• Also the outer product is distributive over addition

a ∧ (b+ c) = a ∧ b+ a ∧ c (2.5)

• and associative

a ∧ (b ∧ c) = (a ∧ b) ∧ c = a ∧ b ∧ c (2.6)

• The outer product of a vector and a bivector defines a trivector that is an oriented

volume.

• Although the formation of a bivector is often illustrated as the result of sweeping one

vector along a second to form a parallelogram, the use of any particular shape is mis-

leading as it is easy to show that the outer product of many different pairs of vectors will

result in the same bivector.

The geometric product

William Clifford (1845-1879) made the next step and, investigating the work of Grassmann,

he turned GA to a useful algebra. Clifford introduced the key feature of GA, the geometric

product, in order to define a product that could identify the roles of the terms in a complex

product. The geometric product can be expressed in terms of the inner and outer products,

and it is defined as:

ab = a · b+ a ∧ b (2.7)

The result of the geometric product seems strange, having two components lying in two different

spaces, a scalar (a · b) and a bivector (a ∧ b). This combination is referred to as a multivector

and is analogous to complex numbers where real and imaginary numbers are combined to form

the complex number.

Since,

ba = b · a+ b ∧ a = a · b− a ∧ b (2.8)
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we can define the inner and outer product in terms of the symmetric and antisymmetric parts

of the geometric product. Thus, for vectors a and b

a · b = 1

2
(ab+ ba)

a ∧ b =
1

2
(ab− ba) (2.9)

Then, the geometric product can be extended to an arbitrary number of vectors with the

following properties:

• The geometric product is associative

(ab)c = a(bc) = abc (2.10)

• The geometric product is distributive over addition

a (b+ c) = ab+ ac (2.11)

• The symmetric part of the geometric product of two vectors is a scalar

• The geometric product has a unique inverse

ab

(
b

b2

)
= a (2.12)

hence, multiplying by b
b2

is the inverse of multiplying by b.

The geometric product can also be used to define the inner and outer product of elements

with single grades, Ar and Bs, where r and s denote the grade of the vector. Such elements

are called blades1.

Ar ·Bs = ⟨ArBs⟩|r−s| if r,s > 0 (2.13)

Ar ·Bs = 0 if r = 0 or s = 0 (2.14)

Ar ∧Bs = ⟨ArBs⟩r+s (2.15)

where ⟨⟩t denotes the grade extraction operator, which sets all multivector components of grade

other than t to zero. For the extraction of the scalar part of a multivector, the subscript 0 is

usually dropped, and it is formulated as ⟨⟩ instead of ⟨⟩0.

2.1.2. Operators

Geometric Algebra also has some other useful operators and elements. The most important of

these are the reverse of a multivector, the dual and the pseudoscalar.

1The term blade in GA is used to refer to quantities that can be written as the outer product of r-vectors,
where r is termed the grade. For example, an r-blade can always be written as A1 ∧ A2 ∧ . . . ∧ Ar. More
information about grades and the new orthonormal basis for computation can be found in section 2.1.3.
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Reversion

Reversion substantially refers to the reversing of the order of any set of vectors that can be

used to define a multivector, and it is symbolised as .̃ A general example of reversion for the

case of a 3D GA is given below:

M = α+ a+B + βI

M̃ = α+ a−B − βI (2.16)

where M is multivector, α is a scalar, a is a vector, B is a bivector and βI is a trivector. Using

the fact that a ∧ b = −b ∧ a, the reversion operator can be expressed by changing the sign of

some particular grades of elements (bivectors and trivectors in 3D) within the multivector.

The pseudoscalar

The pseudoscalar refers to the highest grade basis element and it is symbolised as In, where n

is the dimension of the space. For instance, in 3D GA the pseudoscalar can be written as:

I3 = e1e2e3 (2.17)

where e1, e2, e3 are the orthonormal basis vectors. The reversion of I3 is equal to

Ĩ3 = e3e2e1 = −e1e2e3 = −I3 (2.18)

The pseudoscalar is also denoted as a simple I, because its grade is always the highest and it

is unnecessary to repeat it.

Since the pseudoscalar I is the unique right-handed unit trivector in the algebra, it gives us

a number of new products. When we take the product of I with the vector ei, we produce a

bivector, eg.

Ie1 = e1e2e3e1 = −e1e2e1e3 = e2e3 (2.19)

e1I = e1e1e2e3 = e2e3 = Ie1 (2.20)

Vectors therefore commute with the 3D pseudoscalar,

Ia = aI, for all a (2.21)

Hence, all the basis bivectors can be expressed as the product of the pseudoscalar and a dual

vector.

Ie1 = e1e2e3e1 = e2e3

Ie2 = e1e2e3e2 = −e1e3 = e3e1

Ie3 = e1e2e3e3 = e1e2
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The square of the pseudoscalar is equal to -1:

I2 = e1e2e3e1e2e3 = e1e2e3e3e1e2 = e1e2e1e2 = −1 (2.22)

Duality

Duality is another frequently used concept of Geometric Algebra. The dual transformation is

denoted as [ ]∗ and we map into the dual space by multiplying with the pseudoscalar as follows

[M ]∗ = MI (2.23)

2.1.3. The orthonormal basis for computation

Although many results in GA can be reached without resorting to a basis, it is helpful to have

a basis specifying the numerical multivectors for the 3D GA. Hence, the multivector basis can

be defined via outer products of the three orthonormal basis vectors e1, e2 and e3. The outer

product is usually visualised geometrically as the movement of one vector along the other to

form a ‘directed area’. This is a new object, neither a vector nor a scalar. It is termed a

bivector. Similarly, the result of the outer product of this bivector and another vector is a

trivector (as already seen in section 2.1.2). Generally, an n-volume is termed an n-vector.

Table 2.1 presents the multivector orthonormal basis.

Table 2.1.: The orthonormal basis for computation

Scalar: a

Vector: e1 e2 e3

Bivector: e12 = e1 ∧ e2 e13 = e1 ∧ e3 e23 = e2 ∧ e3

Trivector: e123 = e1 ∧ e2 ∧ e3

We can say that a scalar is grade 0, a vector is grade 1, a bivector is grade 2, as it is formed

from 2 vectors, etc. Generally, an n-vector has grade n. Figure 2.2 illustrates an example of a

trivector (sweeping a ∧ b along c).

2.1.4. Rotation using rotors

Consider any three orthonormal basis vectors of R3, {e1, e2, e3}, then the new three basis

bivectors generated are B1 = e2e3, B2 = e3e1 and B3 = e1e2. The basis bivectors all square to

−1, and all anticommute as given below:

B2 = eiejeiej = −eiejejei = −1 for i ̸= j
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a

b

c

a ∧ b

Figure 2.2.: The trivector or directed volume is the result of sweeping a ∧ b along c.

An important feature of the bivectors is their effect on vectors. For example, the effect of the

bivector B3 on the vectors e1 and e1 + e2 is to rotate them counter-clockwise by 90 degrees.

This example is illustrated in figure 2.3.

e1B3 = e1e1e2 = e2

e2B3 = e2e1e2 = −e2e2e1 = −e1

(e1 + e2)B3 = e1B3 + e2B3 = e2 − e1

This is applicable for every bivector eiej over the plane defined by ei and ej . It is important

here to mention that this method also works in higher-dimension spaces.

e1

e2

e1 + e2e2 − e1

−e1

Figure 2.3.: The rotation effect of bivector B3 over vectors e1 and e1 + e2.

Thus, any vector a in the plane defined by e1 and e2 can be represented using the formula:

a = r (e1 cos θ + e2 sin θ)

= e1r (cos θ +B3 sin θ) (2.24)

where r is the distance of the point a from the origin and θ is the angle between a and e1. This

can be generalised if, instead of B3, the unit bivector B̂ = a∧b
|a∧b| is used. Hence, an operator

which performs rotation in the plane described by B̂ by an angle 2θ, can be expressed as:

R = exp
(
θB̂

)
= 1 +

θB̂

1!
+

θ2B̂2

2!
+

θ3B̂3

3!
+ . . .

= cos θ + B̂ sin θ (2.25)
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Then, any vector a which lies in the plane of the bivector B̂ can be represented by:

a = e1r exp
(
θB̂

)
(2.26)

Using this, it can be shown that a rotation by ϕ radians in the plane of B̂ is accomplished by:

a 7→ a′ = a exp
(
ϕB̂

)
= a

(
cos (ϕ) + B̂ sin (ϕ)

)
(2.27)

It is important to mention that here the vector to be rotated a lies in the plane of rotation.

In a different case, the vector should be decomposed into a component that lies in the plane,

a∥, and one normal to the plane, a⊥.

a = a∥ + a⊥ (2.28)

Now, assuming that R = exp
(
−ϕ

2 B̂
)
and R̃ = exp

(
ϕ
2 B̂

)
, consider the following operation:

a′ = R
(
a∥ + a⊥

)
R̃

=

(
cos

(
ϕ

2

)
− B̂ sin

(
ϕ

2

))(
a∥ + a⊥

)(
cos

(
ϕ

2

)
+ B̂ sin

(
ϕ

2

))
= a⊥ +

(
cos2

(
ϕ

2

)
− sin2

(
ϕ

2

))
a∥ + 2 cos

(
ϕ

2

)
sin

(
ϕ

2

)
B̂a∥

= a⊥ + a∥

(
cos(ϕ) + B̂ sin(ϕ)

)
(2.29)

Equation 2.29 relies on B̂a⊥ = a⊥B̂ and B̂a∥ = −a∥B̂, which states that a bivector commutes

with a perpendicular vector and anticommutes with a parallel vector.

Thus, the component of the vector that lies in the plane is rotated around an axis normal to

the plane without affecting the component that is normal to the plane. This leads to a general

method of rotation in any plane. Therefore, a given rotation ϕ in a plane specified by B̂ can

be performed as:

a 7→ RaR̃ (2.30)

using the element R = exp
(
−B̂ ϕ

2

)
. R is referred to as a rotor .

The most important properties of rotors are that RR̃ = 1 and thus R̃ = R−1, and RaR̃ =

(−R)a(−R̃), which means that there is a double covering of the space of rotations.

Rotors in GA are simpler to manipulate than Euler angles and avoid the problem of gimbal

lock. Gimbal lock is a common problem associated with Euler angles and occurs because two

axes become aligned during rotational operations, producing unexpected behavior since one

degree of freedom is lost.
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2.1.5. Reflection

Consider a reflection of the vector a in the plane orthogonal to a unit 3-vectorm, wherem2 = 1.

aa
′

a‖

a⊥

m

plane

Figure 2.4.: A reflection of the vector a in a plane perpendicular to m. It is obvious that a = a⊥+a∥
and a′ = a⊥ − a∥

The component of a that is parallel to the plane mr changes sign, whereas the perpendicular

components remains unaffected, as shown in figure 2.4. Hence, the parallel component is the

projection onto m and the perpendicular component is the remainder.

a∥ = (a ·m)m (2.31)

a⊥ = a− a ·mm = (am− a ·m)m = (a ∧m)m (2.32)

The result of the reflection is therefore:

a′ = a⊥ − a∥ = −a ·mm+ a ∧mm

= −(m · a+m ∧ a)m = −mam (2.33)

This can be extended to higher dimensions as given in [HS84].

2.2. Conformal Geometric Algebra

This section is an introduction to the Conformal Model of Geometric Algebra (CGA) as first

introduced by Hestenes and Sobczyk in 1984 [HS84]. CGA is a mathematical framework

that offers a compact and geometrically intuitive formulation of algorithms and an easy and

immediate computation of rotors; it is thus suitable for applications in engineering, computer

vision and robotics.

CGA extends 3D Euclidean space to 5 dimensions by adding two extra basis vectors and

thereby providing tools with which to represent and manipulate geometry. The additional

basis vectors e and ē are added to the 3 existing basis vectors e1, e2 and e3 of the 3D GA. e

and ē have opposite signatures;

e2 = +1 ē2 = −1 (2.34)
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The new basis vectors thus provide a space that allows null vectors, n and n̄, which are

defined as:

n = e+ ē n̄ = e− ē (2.35)

where n is associated with the point at infinity and n̄ with the origin. It is very easy to prove

that these vectors are null since:

n2 = (e+ ē) · (e+ ē)

= e2 + 2(e · ē) + ē2

= 1 + 0− 1 = 0 (2.36)

and

n̄2 = (e− ē) · (e− ē)

= e2 − 2(e · ē) + ē2

= 1− 0− 1 = 0 (2.37)

Two basic identities for n and n̄ are:

n · n̄ = (e+ ē) · (e− ē) = e2 − ē2 = 2 (2.38)

x · n = x · n̄ = 0 (2.39)

where x ∈ R3. Another observation is that the squared bivector E2, where E = n ∧ n̄ is equal

to 4;

E2 = (n ∧ n̄) · (n ∧ n̄)

= (n · n̄)(n · n̄)− n2n̄2

= 4 (2.40)

since n ·n̄ = 2 and n2 = n̄2 = 0 and using the identity (a∧b) ·(c∧d) = −(a ·b)(b ·d)+(a ·d)(b ·c).

The Hestenes’ mapping

The mapping used in Hestenes’ illustration ([HS84], page 302) is used to take a spatial (con-

ventional 3D) vector to the equivalent CGA representation. Thus,

H (x) =
1

2
(x− e)n (x− e) (2.41)

where x is a 3D Euclidean vector. Substituting for n = e + ē and using the fact that ē · x =

ē · e = n · x = 0, it is possible to rewrite the equation in terms of null vectors as:

H (x) =
1

2

(
x2n+ 2x− n̄

)
(2.42)
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We can show that H(x) is always a null vector by evaluating:

[H(x)]2 =
1

4
(x2n+ 2x− n̄) · (x2n+ 2x− n̄)

= −1

2
x2n · n̄+ x2

= −x2 + x2 = 0 (2.43)

as ē ·x = ē ·e = n ·x = 0. Another interesting observation is that, for any vector A and B ∈ R5

which represent the points a and b in R4, A · B is related to the Euclidean distance between

the points a and b, as proved in equation 2.44.

A ·B = H(a) ·H(b)

=
1

4
(a2n+ 2a− n̄) · (b2n+ 2b− n̄)

= −1

2
a2 + a · b− 1

2
b2

= −1

2
(a− b)2 (2.44)

Hence, the Euclidean distance between the two points a and b can be defined as:

d (A,B) =
√

−2 (A ·B) (2.45)

More information about distance geometry can be found in [Hes01], [HS84] and [DH93].

2.2.1. Rotation

In Conformal Geometric Algebra rotations are also performed with the rotor elements as in

usual Geometric Algebra (see equation 2.25). Thus, given that Rn̄R̃ = n̄ and RnR̃ = n,

x 7→ RxR̃ can be replaced by H(x) 7→ H(RxR̃), as is shown below.

RH(x)R̃ = R
1

2

(
x2n+ 2x− n̄

)
R̃

=
1

2

(
x2RnR̃+ 2RxR̃−Rn̄R̃

)
=

1

2

(
x2n+ 2RxR̃− n̄

)
= H(RxR̃) (2.46)

2.2.2. Translation

The translation along a vector a is defined as the mapping x 7→ x + a for x. Here we show

that this can be performed by applying a rotor R = Ta = exp(na2 ). Using the power series

expansion of the exponential, the rotor can be simplified to:

T = exp
(na

2

)
= 1 +

na

2
+

1

2

(na
2

)2
+ . . . = 1 +

na

2
(2.47)
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since n is null, an = −na and therefore the higher order terms are all zero.

The rotor T acts over the vectors n, n̄ and x as below:

TnT̃ =
(
1 +

na

2

)
n
(
1 +

an

2

)
= n+ nan+

nanan

4
= n (2.48)

Similarly,

T n̄T̃ =
(
1 +

na

2

)
n̄
(
1 +

an

2

)
= n̄+

na

2
n̄+ n̄

an

2
+

na

2
n̄
an

2

= n̄− 2a− a2n (2.49)

and

TxT̃ =
(
1 +

na

2

)
x
(
1 +

an

2

)
= x+ n(a · x) (2.50)

Therefore, the translation over the null vector H(x) will be:

TH(x)T̃ =
(
1 +

na

2

) 1

2

(
x2n+ 2x− n̄

) (
1 +

an

2

)
=

1

2

(
x2n+ 2(x+ n(a · x))− (n̄− 2a− a2n)

)
=

1

2

(
(x+ a)2n+ 2(x+ a)− n̄

)
= H(x+ a) (2.51)

To summarise, the x 7→ x+ a can be replaced by H(x) 7→ TH(x)T̃ = H(x+ a).

2.2.3. Dilation

A dilation by a factor of α can be represented by the mapping x 7→ αx. This can be achieved

by considering the rotor R = Dα = exp
(
α
2 eē

)
. Since −eēn = neē = n and −n̄eē = eēn̄ = n̄

and by expanding exp
(
α
2 eē

)
, the dilation of the vector H(x) by a factor of exp(−α) about the

origin returns:

DH(x)D̃ = exp
(α
2
eē
) 1

2

(
x2n+ 2x− n̄

)
exp

(
−α

2
eē
)

=
1

2

(
x2 exp

(α
2
eē
)
n+ 2x− exp

(α
2
eē
)
n̄
)

=
1

2

(
x2 exp (−α)n+ 2x− exp (α) n̄

)
= exp(α)

1

2

(
exp(−2α)x2n+ 2 exp(−α)x− n̄

)
= H(exp(−α)x) (2.52)
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Hence, the dilation x 7→ exp(−α)x can be represented by

H(x) 7→ DH(x)D̃ = exp(α)H(exp(−α)x) (2.53)

2.2.4. Inversion

Inversion in the origin corresponds to the mapping x 7→ x
x2 or for non-singular vectors x 7→ x−1.

This can be performed by reflecting in e. The reflections in e of the vectors n, n̄ and x are

given by:

−ene = −een̄ = −n̄

−en̄e = −een = −n

−exe = x

The inversion of H(x) under the reflection in e then gives

−eH(x)e = −e
1

2

(
x2n+ 2x− n̄

)
e

=
1

2

(
−x2n̄+ 2x+ n

)
= x2

1

2

(
1

x2
n+ 2

x

x2
− n̄

)
= x2H

( x

x2

)
(2.54)

Thus, the inversion x 7→ x
x2 is replaced by H(x) 7→ − eH(x)e

x2 = H( x
x2 ).

2.2.5. Blades in CGA

We have already seen that the term blade in GA is used to refer to quantities that can be

written as the wedge product of vectors. For example, an r-blade can always be written as

A1∧A2∧. . .∧Ar, which differs from an r-vector that may be any linear combination of r-blades.

Here we assumed that all null-vectors X are defined such that X · n = −1, unless otherwise

stated.

Vectors and 2-blades

A 2-blade is formed from the outer product A∧B of two null vectors A and B. Considering the

differentiation between signs of null vectors in CGA, many different separations are possible;

A ∧B = −(B ∧A) = −(B) ∧A = B ∧ (−A) (2.55)

The outer product A∧B can be separated into a pair of individual null-vectors that are unique

up to a scale, as shown below.
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Extracting vector A and vector B from A ∧B

We often need to extract the two vectors A and B from the bivector A ∧ B. This paragraph

presents a solution of this problem using projectors. Assume that A and B are normalised so

that A · n = −1 and B · n = −1. Let the 2-blade T = A ∧B and form

F =
1

β
A ∧B (2.56)

where β > 0 and β2 = T 2, so that F 2 = 1 if β2 ̸= 0. Thus, two projector operators can be

defined as:

P =
1

2
(1 + F )

P̃ =
1

2
(1− F ) (2.57)

where P̃ denotes the normal reversion operation applied to P . Note that PP = P , which can

be verified as follows

PP =
1

4
(1 + F ) (1 + F )

=
1

4
(1 + 2F + 1)

=
1

2
(1 + F ) (2.58)

Similarly, it can be shown that P̃ P̃ = P̃ . An equally important property is that P̃P =

PP̃ = 0 which, again, is easy to show

PP̃ =
1

4
(1 + F ) (1− F ) =

1

4

(
1− F 2

)
=

1

4
(1− 1) = 0 (2.59)

In the same way, it can be shown that P̃P = 0.

It is important here to show what effect these projectors have on A and B. Hence, P and

P̃ acting on A and B will return the following results:

PA = 0, PB = B, P̃A = A, P̃B = 0,

This can be easily verified as below:

PA =
1

2

[
1 +

1

β
A ∧B

]
A

=
1

2

[
A+

1

β
(A ∧B)A

]
=

1

2

[
A+

1

β
(A ·B)A

]
=

1

2
(A−A) = 0 (2.60)
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since

(A ∧B)A = (A ∧B) ·A

= −A2B + (A ·B)A

= (A ·B)A , because A2 = 0

and A ·B = −β. This follows from equation 2.45, where A ·B must be negative, the facts that

A2 = B2 = 0 and also from:

β2 = (A ∧B) · (A ∧B)

= −A2B2 + (A ·B)2 (2.61)

Using similar manipulations, it can be shown that PB = B, P̃A = A and P̃B = B. The next

step is to consider the vector obtained by dotting A ∧B with n.

(A ∧B) · n = −n · (A ∧B)

= − (n ·A)B + (n ·B)A

= (B −A) (2.62)

using the fact that A and B are normalised points such that A · n = B · n = −1. Thus, it

follows that:

P [(A ∧B) · n] = P (B −A) = B (2.63)

−P̃ [(A ∧B) · n] = −P̃ (B −A) = A (2.64)

It is also noted that since AP = P̃A = A it follows that P̃AP = P̃ P̃A = P̃A. In that way we

have:

P̃AP = P̃A

PAP̃ = 0

PBP̃ = PB

P̃BP = 0

which mean that the projectors can be written as two-sided operations. Hence, the two points

A and B can be extracted from a 2-blade A ∧B as:

A = −P̃ [(A ∧B) · n] ≡ −P̃ [(A ∧B) · n]P = −P̃ [⟨(A ∧B)n⟩1] (2.65)

B = P [(A ∧B) · n] ≡ P [(A ∧B) · n] P̃ = P [⟨(A ∧B)n⟩1] (2.66)

The use of projectors ensures that one projector, P , will always return the first point, A,

and the second projector, P̃ , will return the second point, B. As a result, an orientation may
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q

p

L = P ∧Q ∧ n

q

p

L′
= Q ∧ P ∧ n

Figure 2.5.: A line L = P ∧Q ∧ n passing through the null vectors P and Q and the ‘opposite’ line,
L′ = Q ∧ P ∧ n.

be inferred for this point pair, hence one can be considered to occur ‘before’ the other. Note

that, it is not possible to extract the null vector from a bivector having one of its points as

n (e.g. B = A ∧ n) using the 2-blade projector-based separation method. One approach to

get round this problem was proposed in [LLW04] and in [Cam07] with minor corrections. A

bivector B may be in the form A ∧ n or n ∧ A, where A is the null vector representing the

spatial point a. Hence,

a =
1

4
(B ∧ n̄) .N ⇔ n is the first component (2.67)

a =
1

4
(n̄ ∧B) .N ⇔ n is the second component (2.68)

where N = n ∧ n̄.

The usefulness of these results will become palpable later when intersections are considered

(section 2.2.6).

3-Vectors

In this section we study trivectors. Consider the null vectors P , Q and R in the 5D space

representing the points p, q and r respectively in 3D space .

Lines as trivectors In order to define a line with direction p to q, the trivector L needs to

be introduced. The trivector L is formed as:

L = P ∧Q ∧ n (2.69)

= Q ∧ n ∧ P

= n ∧ P ∧Q

and corresponds to a line that is passing through the points represented by the null vectors P

and Q. It can be shown algebraically that these 3 lines return the same blade. However, the

line L′ = Q ∧ P ∧ n = −L will have the opposite direction, differing only in sign, due to the

anti-commuting nature of the outer product of the vectors. An example of the lines L and L′

is given in figure 2.5.
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Circles as trivectors A circle can be defined as a trivector C, where the point at infinity,

n, is replaced by a third point on the circle, R. Hence, the equation of a circle in CGA is

formed as:

C = P ∧Q ∧R (2.70)

where C corresponds to a circle that is passing through the points represented by the null

vectors P , Q and R, as shown in figure 2.6.

q p

r

C = P ∧Q ∧R

Figure 2.6.: A circle C = P ∧Q ∧R passing through the null vectors P , Q and R.

The unit circle (figure 2.7) in the plane is formed as the circle passing through the three

key points, e1, −e1 and e2. Hence, for any unit length vector x, we know that H(x) =
1
2(n+ 2x− n̄) = (x+ ē). Thus, we have:

H(e1) ∧H(e2) ∧H(−e1) = 2e1e1ē

and hence the trivector C = 2e1e1ē represents the unit circle. The dual of the unit circle C∗

is equal to

C∗ = CI4 = 2e = (n+ n̄) (2.71)

where I4 is the pseudoscalar given by I4 = e1e2eē.

−e1 e1

e2

C = e1 ∧ e2 ∧ −e1

Figure 2.7.: The unit circle.

If X lies on the circle, we know that X ∧ C = 0. Since C∗ is the dual of a trivector in a 4D

space, it is a vector. Hence, an alternative but useful representation of the circle is given by

X · C∗ = 0

In the equation 2.44 we proved that for any two normalised point representations A and B,
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A · B = −1
2(a − b)2. Thus, consider a point on circle, X, and the circle centre, B, then the

radius ρ of the circle can be calculated as:

X ·B = −1

2
(x− b)2 ≡ −1

2
ρ2 (2.72)

For a normalised point representation X this implies that

X ·
(
B − 1

2
ρ2n

)
= 0 (2.73)

since X · n = −1. Comparing this with X · C∗ we see that our normalised C∗ is

C∗ = B − 1

2
ρ2n (2.74)

Therefore, the vector C∗ encodes in a neat fashion the centre and the radius of the circle in

the plane. We also note that the radius of the circle can be easily calculated by squaring C∗

(C∗)2 =

(
B − 1

2
ρ2n

)2

= −ρ2B · n = ρ2 (2.75)

since B2 = 0, n2 = 0 and B · n = −1. Using equation 2.75 it is easy to show that:

B = C∗ +
1

2
(C∗)2n (2.76)

Note that the above relations assume that C∗ is normalised such that C∗ · n = −1 since

C∗ · n = B · n = −1, as it is assumed that B is a normalised null vector.

However, there is a more elegant way of calculating the centre of a circle in 3D, as proved

in [LLW04]. The centre of a circle, C, is also given by reflecting the point at infinity, n, in the

circle as:

B = CnC (2.77)

4-Vectors

This section studies 4-vectors. 4-vectors in 5D space reprsent 3-planes, Φ, and spheres, Σ.

Planes as 4-vectors A 3-plane, Φ, passing through the three points defined by null vectors

P , Q and R is given by:

Φ = P ∧Q ∧R ∧ n (2.78)

Figure 2.8 illustrates an example of a 3-plane passing through the points p, q and r.

The physical quantities we might want to extract from such a 4-vector are clearly the normal

to the plane and the perpendicular distance of the plane from the origin. This can be achieved
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b

b

b

p

q

r
Φ = P ∧Q ∧ R ∧ n

Figure 2.8.: The 3-plane Φ = P ∧Q ∧R ∧ n.

using the dual of the plane. Consider the plane z = d, which is parallel to the xy-plane and

distance d from it. The plane Φ can be represented as

Φ = F (de3) ∧ F (e1 + de3) ∧ F (e2 + de3) ∧ n

=
1

8
{(2de3 − n̄) ∧ (2[e1 + de3]− n̄) ∧ (2[e2 + de3]− n̄) ∧ n}

= de1 ∧ e2 ∧ e3 ∧ n− 1

2
e1 ∧ e2 ∧ n̄ ∧ n

= de1 ∧ e2 ∧ e3 ∧ n− e1 ∧ e2 ∧ e ∧ ē (2.79)

Then it is simple to show that the dual of Φ is given by

Φ∗ = ΦI = dn+ e3 (2.80)

This holds for any d. If the plane is rotated by R, such that Re3R̃ = n̂, the general equation

for the dual of the new plane RΦ∗R̃ is given by

Φ∗ = dn+ n̂ (2.81)

Note that the above assumes that the dual is normalised such that [Φ∗]2 = 1; this can be

ensured by normalising the plane such that Φ2 = 1. Therefore, given 3 points on the plane, P ,

Q and R, we form the normalised plane Φ and its dual Φ∗, and we can then extract n̂ and d

as follows

d =
1

2
Φ∗ · n̄ (2.82)

n̂ = Φ∗ − 1

2
(Φ∗ · n̄)n (2.83)

Spheres as 4-vectors Spheres can be defined as a 4-vector where the point at the infinity,

n, is replaced by a point on the sphere. Hence, given any 4 points p, q, r and s whose 5D

representations are the null vectors P , Q, R and S respectively, the sphere passing through

those points is defined by the 4-vector Σ = P ∧Q ∧R ∧ S.
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We know that X ∧ Σ = 0 for any X lying on the sphere. This can be rewritten as

X · Σ∗ = 0 (2.84)

where Σ∗ is the dual to Σ, hence is a vector. As for the circle solution, we can show that the

dual representation of the sphere naturally encodes the centre and the radius of the sphere.

Thus

X · C = −1

2
(x− c)2 ≡ −1

2
ρ2 (2.85)

where X is a point on a sphere, C is the centre of the sphere and ρ is the radius of the sphere.

For a normalised point X, where X · n = −1 this means that

X ·
(
C − 1

2
ρ2n

)
= 0 (2.86)

Comparing equation 2.86 with equation 2.84, we can find that

Σ∗ = C − 1

2
ρ2n (2.87)

Thus, the dual vector Σ∗ encodes the centre and radius of the sphere. The radius and the

centre can immediately be calculated by squaring Σ∗

(Σ∗)2 =

(
C − 1

2
ρ2n

)2

= ρ2

since C2 = 0, n2 = 0 and C · n = −1. Using this equation, we can easily show that:

C = Σ∗ +
1

2
(Σ∗)2n (2.88)

As for the circle case, the centre, C, of a sphere, Σ, is also given by reflecting the point at

infinity, n, in the sphere:

C = ΣnΣ (2.89)

Note that we have used the idea of reflection, developed in section 2.1.5, to reflect geometric

objects in other geometric objects [LLW04].

5-Vectors

5-vectors, such as the pseudoscalar I5, have two orientations and these correspond to Stolfi’s

concept [Sto91] of an oriented universe. The pseudoscalar is defined as I5 = e1∧e2∧e3∧e∧ ē =

e12345, and it satisfies I25 = −1.
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2.2.6. Intersections

This section outlines the various ways of intersecting objects within the conformal geometric

algebra model. In this report, an operator termed the meet is used [HS84], denoted by the

symbol ∨, which given two objects A and B returns their intersection. For instance, the meet

of 2 entities defined by blades Dm and Es of grades m and s, lying within an embedding entity

of grade p is given by

D ∨ E =
[
⟨DE⟩2p−m−s

]∗
(2.90)

Intersecting lines with lines

Here we consider the intersection of two lines. Let the lines be L1 and L2. The meet of these

two lines is given by

X = L1 ∨ L2 = [⟨L1L2⟩2n−r−s]
∗ (2.91)

where n denotes the dimension of the embedding space, r is the grade of the first line and s

the grade of the second. Thus, 2n − r − s = 10 − 3 − 3 = 4, so the dual object has grade 1.

However, if the lines intersect at a point, the meet, X, will not return this intersection point.

Instead, if the lines intersect, L1 ∨ L2 = 0 and if the lines do not intersect, L1 ∨ L1 ∝ n. In

order to find the intersection point, we use the following procedure. Assume that the lines L1

and L2 intersect at point P . Reflect the line L1 in line L2 and get L′
1 = L2L1L2. Then, find

the line which is perpendicular to L2, passing through the point P , which can be shown to be

equal to LP
2 = L1 − L2L1L2 [LLW04]. Take any arbitrary point representation Y and reflect

in LP
2 via Y ′ = LP

2 Y LP
2 . Then, take the midpoint of Y and Y ′, Y ′′ = 1

2(Y + Y ′), which must

lie on the line LP
2 . Thereafter, reflect the point Y ′′ in line L2 to give Y ′′′ = L2Y

′′L2 and again

take the midpoint P ′ = 1
2(Y

′′ + Y ′′′). The representation of the intersection point can then be

extracted via equation 2.92; figure 2.9 illustrates the above.

P =
−(P ′nP ′)

2(P ′ · n)2
(2.92)

Note, Y ′′ and P ′ as given here are not null vectors but are the null vectors representing the

midpoints plus some multiples of n. In equation 2.92 these multiples of n are eliminated.

Intersecting circles with circles and lines

We now consider the intersection of two circles or a circle and a line. Firstly, we will focus on

the meet of two circles, C1 and C2.

X = C1 ∨ C2 = [⟨C1C2⟩2n−r−s]
∗ (2.93)

where 2n−r−s = 10−3−3 = 4, so that the dual object has grade 1. However, the intersection

of two circles mostly returns two intersection points (when they lie in the same plane), and the
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Figure 2.9.: The solution for line to line intersection.

1-grade object X can not give us the two points. In that case, the meet does not return the

intersection points but just an object that helps us to conclude whether the circles intersect at

two points, a point or if they do not intersect at all. Hence,

if circles have two intersections, C1 ∨ C2 = 0,

if circles have one intersection, C1 ∨ C2 = X, where X2 = 0

if circles have no intersection, C1 ∨ C2 = X, where X2 ̸= 0

If C1 ∨C2 = X and X2 = 0, then it is obvious that the intersection point is represented by X.

If the meet gives zero, there are two intersections, and these can easily be found by intersecting

the plane of one of the circles with the other circle as:

B = C1 ∨ (C2 ∧ n) = [⟨C1(C2 ∧ n)⟩2n−r−s]
∗ (2.94)

where 2n− r − s = 10− 3− 4 = 3, so that the dual object has grade 2. Thus, the two points

can be extracted from the bivector B using the projectors given in equation 2.65.

Now, consider the intersection of a circle C1 and a line L1. The meet is again a grade 1

object, and it similarly holds that:

if circle and line have two intersections, C1 ∨ L1 = 0,

if circle and line have one intersection, C1 ∨ L1 = X, where X2 = 0

if circle and line have no intersection, C1 ∨ L1 = X, where X2 ̸= 0

Equally, if C1∨L1 = X and X2 = 0, then the intersection point is represented by X and if the

meet gives zero, the two intersections can be found by intersecting the plane of the circle with

the line. It is also important to mention that, in the case where C1 ∨ L1 = X and X2 ̸= 0,

which means that no intersection exist, the sign of X2 tell us whether the line passes through

the circle (X2 < 0) or does not pass through the circle (X2 > 0).
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Intersecting planes with planes, circles and lines

This section studies the intersection between planes and planes, planes and circles, and planes

and lines, Firstly, the plane to plane intersection will be studied. Consider two planes Φ1 and

Φ2. The meet between two planes gives:

L = Φ1 ∨ Φ2 =
[
⟨Φ1Φ2⟩2n−r−s

]∗
(2.95)

where 2n − r − s = 10 − 4 − 4 = 2. Therefore, the dual object has grade 5 − 2 = 3, and

represents a line. The sign of L2 indicates whether the planes intersect. If L2 > 0, then the

planes intersect in the line L. On the other hand, when L2 = 0, the intersection does not exist,

which means that the two planes are parallel.

The intersection of a plane Φ1 and a circle C1, when this exists, is a pair of points, or a

single point and it is formulated as:

B = Φ1 ∨ C1 =
[
⟨Φ1C1⟩2n−r−s

]∗
(2.96)

where 2n − r − s = 10 − 4 − 3 = 3, and so the dual object has grade 2. Looking at the

sign of the resulting 2-blade, B, it is possible to tell if the intersection exists and whether the

intersection is a single point or a pair of points. Therefore, if B2 > 0, then the meet between

Φ1 and C1 gives two points. Given the bivector, B, the two points of the intersection can be

extracted via the projectors given in equation 2.65. In the case where B2 = 0, the intersection

is a single point, X. It is then trivial to find the representation of that point using the formula

X = BnB. Finally, when B2 < 0 holds, the intersection between the plane and the circle does

not exist.

Replacing the circle C1 with a line L1, the meet will still give us a 2-blade, B. However, a

line and a plane intersect at most in one single position. Thus, the bivector will be of the form

B = X ∧ n, where X is the representation of the point of the intersection. If B2 > 0 the line

and plane intersect in a point, if B2 = 0 the line and plane are parallel and never intersect and

if B = 0 the line lies in the plane.

Intersecting spheres with circles or lines

Now we consider, the intersection of a sphere, Σ1 (4-blade), with a circle, C1 (3-blade) or a

single line, is the subject of this section. The intersection, where it exists, could be a single

point or a pair of points (or the circle C1 for the case where the circle is exactly on the outline

of the sphere).

According to the meet formulation, the intersection of a sphere, Σ1, with a circle, C1 can be

expressed as:

B = Σ1 ∨ C1 =
[
⟨Σ1C1⟩2n−r−s

]∗
(2.97)

2n − r − s = 10 − 4 − 3 = 3, hence, the dual quantity will have grade 5 − 3 = 2, which is a
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bivector, and represents the 2 intersecting points. Once again, the sign of the resulting squared

2-blade, B2, gives us information on whether the intersection exists and if the sphere and circle

intersect in a single point or a pair of points. In the case of two intersections the points can be

extracted from B using the projectors, as before, and in the case of tangency, the single point

of contact is obtained by taking BnB.

Similarly, substituting the circle C1 with a line L1 and intersecting with a sphere Σ1, the meet

again returns a 2-vector whose square denotes whether there are two, one or no intersection.

The intersection points can be obtained easily in the same way as for the circle case.

Intersecting spheres with spheres or planes

Here we deal with the intersection of two spheres Σ1 and Σ2 or the intersection of a sphere Σ1

and a plane Φ1. This intersection, where it exists, is a circle (or a single point).

Firstly, we will consider the intersection between two spheres. Spheres do not intersect

if the distance from their centres is less than the sum of their radii d > (ρ0 + ρ1). Also, if

d < |ρ1 − ρ2|, one of the two spheres is completely contained in the other, hence no intersection

exists. If d < |ρ1 − ρ2| and ρ1 < ρ2, then the first sphere is contained in the second, otherwise

the second sphere is contained in the first. In the case where d = |ρ1 − ρ2| = 0, then the two

spheres are identical and the distance between them is trivially 0.

The two spheres are intersecting only when |ρ1 − ρ2| ≤ d ≤ ρ1+ ρ2. The intersection will be

a circle (or a point, if the two spheres merely touch one another) with normal plane Φ. This

circle can be calculated using the formula for the meet ([LLW04]):

C = Σ1 ∨ Σ2 =
[
⟨Σ1Σ2⟩2n−r−s

]∗
(2.98)

2n − r − s = 2 · 5 − 4 − 4 = 2, so that the dual quantity will have grade 5 − 2 = 3, which

is a trivector, and generally represents the circle of intersection. The value of C can tell us

whether the result is a circle
(
C2 > 0

)
, a single point

(
C2 = 0

)
or there is no intersection(

C2 < 0
)
. In the case where

(
C2 > 0

)
, the centre and radius of the circle can be extracted

according to section 2.2.5. Similarly, using the same extracting formula from C for the case

where
(
C2 = 0

)
, we will find that the circle has zero radius and its centre will be the point of

tangency of the two spheres. In the same way, an attempt to extract the radius and the centre

for the case where
(
C2 < 0

)
leads to an imaginary value for the radius, and a centre (because

no intersection exist) which lies on the shortest line joining the surface of the spheres (i.e. that

joining the centres). If the two spheres have the same radii, it is the midway point on this line.

In the same way, instead of having a second sphere, Σ2, we can have an intersection with a

plane, Φ1. The result of the meet between sphere and plane will also be a trivector, C,

C = Σ1 ∨ Φ1 = [⟨Σ1Φ2⟩2]
∗ (2.99)

and the sign of the square of this trivector, C2 indicates whether the two objects are tangent,

intersect in a circle or do not intersect at all.
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2.3. Conclusions

This chapter introduced Geometric Algebra and examined how the Conformal Model can be

used to represent geometric primitives such as points pairs, lines, circles, planes and spheres.

We also looked at how rotors can be applied to those objects within the Conformal Model. CGA

is a mathematical framework that offers a compact and geometrically intuitive formulation of

algorithms and an easy and immediate computation of rotors; it is thus suitable for applications

in engineering, computer vision and robotics. The model described in this chapter will be the

mathematical basis on which this thesis is based.





3
A Novel Inverse Kinematics Solver

I n this chapter, we address the problem of manipulating articulated figures in an inter-

active and intuitive fashion for the design and control of their posture. This problem

finds its application in the area of robotics, computer animation, ergonomics and the com-

puter games industry. In the area of computer graphics, articulated figures are a convenient

model for humans, animals or other virtual creatures from films and video games. The most

popular method for animating such models is motion-capture; however, despite the availability

of highly sophisticated techniques and expensive tools, many problems appear when dealing

with complex figures. Most virtual character models are complicated; they are made up of

many joints having a high number of degrees of freedom (DoF), thus, it is often difficult to

produce a realistic character animation.

3.1. Introduction and Motivation

A posture is defined as the skeletal configuration of a figure; for a realistic posture a set of

criteria should be satisfied. All character models have natural articulation limits and inter-

penetration of the body with other objects or themselves is not permitted. In addition, physical

laws should be considered as well as numerous personal factors. General constraints can be

applied to most articulated figures, however special cases of posture control are needed when

a large number of degrees of freedom exist.

37
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Inverse Kinematics (IK) is a method for computing the posture via estimating each indi-

vidual degree of freedom in order to satisfy a given task; it plays an important role in the

computer animation and simulation of articulated figures. Inverse Kinematics finds applica-

tions in several areas. IK methods have been implemented in many computer graphics and

robotics applications, aiming to animate or control different virtual creatures. They are also

very popular in the video games industry. The field of computer-aided ergonomics is also

concerned with articulated figures, especially human models developed for simulation and pre-

diction purposes. The need for accurate biomechanical modelling and body sizing based on

anthropometric data make IK methods a popular approach for fast and reliable solution. IK

has been used in rehabilitation medicine in order to observe asymmetries or abnormalities.

Recently, IK techniques have also been applied in protein science for protein structure predic-

tion [CD03]. However, the production of real-time IK solvers that are able to return realistic

postures, without erratic discontinuities and singularities, posed a problem for researchers for

many years; many algorithms have been implemented for computing skeletal poses but most

suffer from unnatural poses, have difficulties in dealing with complex figures and are compu-

tationally expensive.

In this work, the most popular Inverse Kinematic techniques are reviewed. A new heuristic

iterative method, FABRIK, is also presented for solving the IK problem in different scenarios.

FABRIK (Forward And Backward Reaching Inverse Kinematics) is an efficient method for

solving the IK problem; it uses a forward and backward iterative approach, finding each joint

position via locating a point on line. FABRIK has been utilised in highly complex systems with

single and multiple targets, with and without joint restrictions. It can easily handle end effector

orientations and support, to the best of our knowledge, all chain classes. A reliable method for

incorporating constraints is also presented and utilised within FABRIK. The proposed method

retains all the advantages of FABRIK, producing visually smooth movements without oscil-

lations and discontinuities, and with low computational cost. Several experiments have been

implemented for comparison purposes between the most popular manipulator solvers, includ-

ing multiple end effectors with multiple tasks, and highly constrained joints. The algorithms

are tested for reliability, computational cost, realistic movements, reconstruction quality, con-

version criteria and number of iterations.

In this chapter, vectors will be designated in bold font to distinguish them from other symbols

and avoid any confusion.

3.1.1. The articulated body model

This section provides a brief introduction to the human skeleton and joint modelling. Before

motion data can be edited by any system, it usually needs to be preprocessed to ensure that

correct hierarchical connections and constraints are satisfied. Human body modelling is a

problem that arises in ergonomics and in computer graphics applications. It is a complex

hierarchical model consisting of many joints, each one having different degrees of freedom and

various possible restrictions. In fact, the human body consists of more than 200 bones and

joints.
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Figure 3.1.: An example of a skeletal structure of a human.

Human Body Modelling

A rigid multibody system consists of a set of rigid objects, called links, connected together by

joints. A joint is the component concerned with motion; it permits some degree of relative

motion between the connected segments. Virtual body modelling is important for human

posture control. A well constrained model can restrict postures to a feasible set, therefore

allowing a realistic motion. Most models assume that body parts are rigid, although this

is just an assumption approximating reality. The skeletal structure is usually modeled as a

hierarchy of rigid segments connected by joints, each defined by their length, shape, volume

and mass properties. The skeletal structures are often defined using a parent-child system (see

figure 3.1). The size, shape and proportions of the body and its segments are also essential in

order to build models with realistic dimensions and proportions.

Figure 3.2 shows examples of a model of a human body and human legs taken by a motion

capture system (PhaseSpace Impulse System [Pha]) and graphically processed in Blender [Ble].

The joints are shown as spheres.

A manipulator such as a robot arm or an animated graphics character is modeled as a chain

composed of rigid links connected at their end by rotating joints. Any translation and/or

rotation of the i-th joint affects the translation and rotation of any joint placed later in the

chain. The chains are built under the assumption that all bones have at most one parent and

any number of children. The chains can be formalised as follow: All bones (joints) with no

children are marked as end effectors; a chain can be built for each end effector by moving back

through the skeleton, going from parent to parent, until the root (the start of the chain) is

reached. By definition, in the IK problem, the root joint is assumed fixed but methods can

cope easily with translation of the root.

There are a variety of possible joint types. For a well designed human model, it is essential to

study these joint types. Each joint provides a local rotation (and each bone a local translation)

with different degrees of freedom (DoF). Different rotation paradigms arise from different joint
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Figure 3.2.: Part of a skeletal animation presenting joints of a human body (left) and human legs
(right).

types. The main human joint types are enumerated below (see also figure 3.3):

1. The suture joint model (1 DoF): This is a fixed joint that allows very limited movement.

Suture joints can be found in the skull. The bones in the skull are held together with

fibrous connective tissue.

2. The hinge joint model (1 DoF): The simplest type of joint; it can be found in the elbows,

knees and the joints of the fingers and toes. Hinge joints allow movement in only one

direction.

3. The gliding joint model (2 DoF): Gliding joints permit a wide range of mostly sideways

movements - as well as movements in one direction.

4. The saddle joint model (2 DoF): A saddle joint is more versatile than either a hinge joint

or a gliding joint. It allows movement in two directions.

5. The pivot joint model (2 DoF): The pivot joint is a 2 degree of freedom joint and it can

be found in the neck allowing a side to side turn of the head.

6. The ball and socket joint model (3 DoF): This is the most mobile type of joint in the hu-

man body; it allows 3 degrees of freedom. A limited (in the sense of restricted magnitude)

version of the ball and socket joint is the Ellipsoidal joint.

It is also possible to work with more general types of joints, and thereby simulate non-rigid

objects.

Kinematic joint models must be defined in order to formalise the relative motion of each

joint. An analytically and anatomically correct model is necessary to control and constrain

the available movements of the human body. These models are mainly characterised by the

number of parameters which describe the motion space and are usually constrained by joint

limits and joint structure [BPW93, Cra89]. Because of their complex nature, most of the
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Figure 3.3.: Human joints with their available movements. The images have been taken from the
Microsoft Encarta Online Encyclopedia 2008 [Enc].

proposed joint models are simplified or approximated by more than one joint. There are

many different models, each one performing different movements. Each specific model can

be expressed via multiple joints of different types together with their movements and degrees

of freedom. The most well-known models are: the shoulder model, a very complex model

composed of 3 different joints [MT00, WV98, KTL07, HUHF03]; the spine model, a complex

arrangement of 24 vertebrae (usually, for simplicity, the spine is modelled as a simple chain of

joints [BPW93, IP90, Kor85, MB91]); the hand model, this is the most versatile part of the

body comprising a large number of joints [RG91, MSZ94, KL07]; the strength model, which

takes account of the forces applied from the skeletal muscles to the bones [BPW93].

A realistic body appearance is also very important in many graphical applications. Thus,

data additional to the skeletal structure must be added for the generation of a more realistic

human animation with skin, face, clothes etc [SPCM97].

Figure 3.3 shows an example of human joints with their available degrees of freedom. More

details about human body and kinematic joint models can be found in [BPW93, Cra89, MT00,

Kor85, MSZ94, WW91].

Motion

Once a body model has been defined, it can then be animated, manipulated or simply used

for simulation purposes. Animating articulated figures is highly dependent on their allowed

motion. Motion is the change in position of an object with respect to a reference. A motion

can be achieved when a rotational or translational transformation has been applied in order

to move the end effector(s) of a chain to a desired position. There are two main issues related

to motion and these are given below.
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Figure 3.4.: Possible solutions of the IK problem: (a) The target is unreachable; in many cases it
is impossible for the linked structure to touch the target, (b) One solution: there are instances where
there is only one solution to the problem, (c) Many solutions: most often, the IK problem has more
than a single solution.

• Forward Kinematics (FK): can be defined as the problem of locating the end effectors’

positions after applying known transformations to the chain.

• Inverse Kinematics (IK): is described as the problem of determining an appropriate

joint configuration for which the end effectors move to desired positions, named target

positions, as smoothly, rapidly, and as accurately as possible.

During recent decades, many methods have been proposed to solve the IK problem. However,

for a complete IK solver it is important to apply restrictions in order to control the joint

configurations, according to the joint type. Moreover, we often have models with multiple end

effectors and multiple targets. Performing single tasks sequentially is not a practical way of

controlling complex figures. Therefore, it is desirable for a resolution technique to be able to

manage multiple tasks with an appropriate strategy.

The FK problem has a unique solution, and its success depends on whether the joints are

allowed to do the desired transformation. In contrast, when dealing with IK, it is not always

the case that a solution can be achieved. There are instances where the goal is unreachable or

when two or more tasks conflict and cannot be satisfied simultaneously. Unreachable targets

are the targets which can be further than the chain can reach or can be at a point where no

pivoting of links can bend the chain to reach (see figure 3.4). These problems are known as

over-constrained problems. On the other hand, there are instances where more than a single

solution exists. It is up to the IK method to choose the best solution and the IK solver’s

performance is ranked according to how realistic the solution is and the computational cost of

choosing that solution.

3.2. Related Work

The production of realistic and plausible motions remains an open challenge within the robotics

and animation communities. Several algorithms have been implemented for computing the

poses of a skeletal structure; the most popular techniques for solving the IK problem are

presented in this section.
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Let the complete joint configuration of the multibody be specified by the scalars θ1, ..., θn,

assuming that there are n joints and each θj value is called a joint angle (joint configurations

may not always be in terms of angles), where θj is the angle in the plane of rotation assuming

we also have knowledge of the rotation axis. Certain points on the links are identified as

end effectors. To solve the IK problem, the joint angles must be settled so that the resulting

configuration of the multibody places each end effector at, or as close as possible to, its target

position. If there are k end effectors, let their positions be denoted as s1, ..., sk relative to

a fixed origin. Each end effector position si is a function of the joint angles. The column

vector (s1, s2, ..., sk)
T can be written as s⃗; this can be viewed as a column vector either with

m = 3k scalar entries or with k entries from R3. One way to control the multibody is to specify

target positions, one for each end effector. The target positions are also defined by a vector

t⃗ = (t1, t2, ..., tk)
T , where ti is the target position for the i -th end effector. Let ei = ti − si,

be the desired change in position of the i -th end effector (moving to the desired i -th target).

This equation can be rewritten as e⃗ = t⃗− s⃗.

The joint angles are also written as a column vector θ = (θ1, ..., θn)
T . The end effector

positions are functions of the joint angles; this fact can be expressed as

s⃗ = f (θ) (3.1)

or, for i = 1, ..., k, s⃗i = fi (θ). This is called the Forward Kinematics (FK) solution.

The goal of Inverse Kinematics (IK) is to find a vector θ such that s⃗ is equal to a given

desired configuration s⃗d:

θ = f−1 (⃗sd) (3.2)

where f is a highly non linear operator which is difficult to invert.

However, there are instances where a solution to the Inverse Kinematics problem does not

exist due to an unreachable target or where the (best) solution is not unique. Even in well-

behaved situations, a closed-form equation cannot generally be achieved. Therefore, the use of

iterative methods to approximate a good solution to the problem seems to be necessary. The

most popular numerical approach is to use the Jacobian matrix to find a linear approximation

to the IK problem.

3.2.1. Jacobian inverse methods

The Jacobian J is a matrix of partial derivatives of the entire chain system relative to the

end effectors s. The Jacobian solutions are a linear approximation of the IK problem (see

figure 3.5); they linearly model the end effectors’ movements relative to instantaneous system

changes in link translation and joint angle. The Jacobian matrix J is a function of the θ values

and is defined by

J (θ)ij =

(
∂si
∂θj

)
(3.3)
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Figure 3.5.: The Jacobian solution is a linear approximation of the actual motion of the kinematic
chain.

where i = 1, ..., k and j = 1, ..., n. Orin and Schrader in [OS84] discussed how to calculate the

Jacobian matrix entries for different representations of joints and multibodies. The Jacobian

matrix entries for the j-th rotational joint can be calculated as follows

∂si
∂θj

= vj × (si − pj) (3.4)

where pj is the position of the joint, and vj is the unit vector pointing along the current axis

of rotation for the joint. Note that J can be viewed either as a k× n matrix whose entries are

vectors in R3, or as an m× n matrix with scalar entries (m = 3k).

Equation 3.1 for forward dynamics can now be written as

˙⃗s = J (θ) θ̇ (3.5)

where the dot notation specifies the first derivative with respect to time. Using the current

values θ, s⃗ and t⃗, the Jacobian J = J(θ) can be computed. We then seek an update value ∆θ

for the purpose of incrementing the joint angles θ by ∆θ:

θ := θ +∆θ (3.6)

The change in end effector positions caused by this change in joint angles can be estimated as

∆s⃗ ≈ J∆θ (3.7)

The idea is that the ∆θ value should be chosen so that ∆s⃗ is approximately equal to e⃗,

although it also common to choose ∆θ so that the approximate movement ∆s⃗ in the end

effectors (partially) matches the velocities of the target positions.

Thus, the FK problem can be expressed as e⃗ = J∆θ and the IK problem can be rewritten as

∆θ = J−1e⃗. In most cases, the IK equation cannot be solved uniquely. Indeed, the Jacobian

J may not be square or invertible, and even if it is invertible, J may work poorly as it may be
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nearly singular1. Several approaches have been proposed to overcome these problems. Such

methods are presented and discussed in the rest of this section.

Jacobian pseudo-inverse

The Jacobian Pseudo-inverse, also known as the Moore-Penrose inverse of the Jacobian, sets

the value ∆θ equal to

∆θ = J†e⃗ (3.8)

where J† is an n×m matrix and is called the pseudo-inverse of J . It is defined for all matrices

J , even ones which are not square or not of full row rank. The pseudo-inverse gives the best

possible solution to the equation J∆θ = e⃗ in the least squares sense.

The pseudo-inverse has the property that the matrix (I − J†J) performs a projection onto

the nullspace of J . Therefore, for all vectors φ, J(I − J†J)φ = 0. This means that we can set

∆θ by

∆θ = J†e⃗+ (I − J†J)φ (3.9)

for any vector φ and still obtain a value for ∆θ which minimises the value J∆θ − e⃗. Several

authors have used the nullspace method to help avoid singular configurations [Lie77, MK85].

A more sophisticated nullspace method, the Extended Jacobian method, was introduced by

Baillieul [Bai85]; in this version a local minimum value of a function is tracked as a secondary

objective.

The pseudo-inverse method can be derived as follows:

JTJ∆θ = JT e⃗ (3.10)

Then let z⃗ = JT e⃗ and solve the equation

JTJ∆θ = z⃗ (3.11)

It can be shown that z⃗ is always in the range of JTJ , hence the above equation always has

a solution. When J is full row rank, JTJ or JJT is guaranteed to be invertible. In this case,

the minimum magnitude solution ∆θ can be expressed as

∆θ =
(
JTJ

)−1
JT e⃗ ≡ JT

(
JJT

)−1
e⃗ (3.12)

The pseudo-inverse method is widely discussed in the literature, however it often performs

poorly because of its instability near singularities.

1Singularities occur when no change in joint angle can achieve a desired change in chain end position.
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Jacobian transpose

The Jacobian transpose method was first used for inverse kinematics in [BDMS84, WE84].

The idea is to use the transpose of the Jacobian instead of its inverse. Hence,

∆θ = αJT e⃗ (3.13)

for some appropriate scalar α. Obviously the transpose of the Jacobian is not the same as the

inverse; however, [BDMS84, WE84] justify the use of the transpose in terms of virtual forces.

We can easily show that for all J and e⃗,
⟨
JJT e⃗, e⃗

⟩
≥ 0, where ⟨a,b⟩ indicates the dot product

between vectors a and b,

⟨
JJT e⃗, e⃗

⟩
=

⟨
JT e⃗, JT e⃗

⟩
= ∥JT e⃗∥2 ≥ 0 (3.14)

Therefore, if we update the angles ∆θ in eq. 3.13 by a sufficiently small α ≥ 0, the end effector

positions will be changed by αJJT e⃗. α can be calculated by minimising the new value of the

error vector e⃗ after each update. Assuming that the end effector position change is equal to

αJJT e⃗, α is chosen to make this value as close as possible to e⃗. Thus α is given by

α =

⟨
e⃗, JJT e⃗

⟩
⟨JJT e⃗, JJT e⃗⟩

(3.15)

Singular Value Decomposition

The singular value decomposition (SVD) provides a powerful method for utilising the pseudo-

inverse Jacobian. Let J be the Jacobian matrix. A singular value decomposition of J consists

of expressing J in the form

J = UDV T (3.16)

where U and V are orthogonal matrices and D is diagonal. For an m × n Jacobian matrix,

U is m × m, D is m × n, and V is n × n. The non-zero entries of the D matrix are the

values σi = dii along the diagonal. It is assumed that m ≤ n and, without loss of generality,

σ1 ≥ σ2 ≥ ... ≥ σm ≥ 0. Note that there are cases where σi = 0, for some i. In fact, the rank

of J is equal to the largest value r such that σr ̸= 0 and σi = 0 for i > r, . We use ui and

vi to denote the i -th columns of U and V respectively. Their orthogonality implies that their

columns form an orthonormal basis for Rm (respectively Rn). The vectors vr+1, ...,vn are an

orthonormal basis for the nullspace of J . The singular value decomposition of the Jacobian J

always exists, and can be formed as

J =

r∑
i=1

σiuiv
T
i (3.17)

The transpose, DT , of D is the n×m diagonal matrix. The product DDT is the m×m matrix

with diagonal entries d2ii. The pseudo-inverse, D† =
(
d†ii

)
, of D is an n ×m diagonal matrix
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with diagonal entries

d†ii =

{
1/dii if dii ̸= 0

0 if dii = 0
(3.18)

The pseudo-inverse of the Jacobian is thus equal to J† = V D†UT and can be rewritten as

J† =
r∑

i=1

σ−1
i viu

T
i (3.19)

Damped Least Squares

The Damped Least Squares method (DLS) was first used for inverse kinematics by [Wam86,

NH86]. DLS avoids many of the pseudo-inverse method’s problems with singularities and can

give a numerically stable method of selecting ∆θ. In the DLS method, instead of finding the

minimum vector ∆θ that gives a best solution to equation e⃗ = J∆θ, we find the value of ∆θ

that minimises the quantity

∥J∆θ − e⃗∥2 + λ2∥∆θ∥2 (3.20)

where λ ∈ R is a non-zero damping constant. This is given by

(
JTJ + λ2I

)
∆θ = JT e⃗ (3.21)

It is shown that JTJ + λ2I is non-singular, thus the DLS solution is equal to

∆θ =
(
JTJ + λ2I

)−1
JT e⃗ (3.22)

Now JTJ is an n× n matrix, where n is the number of degrees of freedom. It is easily proven

that
(
JTJ + λ2I

)−1
JT = JT

(
JJT + λ2I

)−1
; the advantages of this transform over the one

in eq. 3.22 is that the matrix being inverted is m ×m where m = 3k is the dimension of the

space of the target positions, and m is often much less than n. Thus,

∆θ = JT
(
JJT + λ2I

)−1
e⃗ (3.23)

The damping constant depends on the details of the multibody and the target positions and

must be chosen carefully to make equation 3.23 numerically stable. The damping constant

should be large enough so that the solutions for ∆θ are well-behaved near singularities, but if

it is too large, the convergence rate is slow.

Pseudo-inverse Damped Least Squares

The Pseudo-inverse Damped Least Squares uses the singular value decomposition (SVD) under

the damped least squares method. Hence, the matrix JJT + λ2I can be rewritten as
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JJT + λ2I =
(
UDV T

) (
V DTUT

)
+ λ2I = U

(
DDT + λ2I

)
UT (3.24)

The matrix DDT + λ2I is a diagonal matrix with entries σ2
i + λ2. It is clearly non-singular

with inverse an m×m diagonal matrix with non-zero entries
(
σ2
i + λ2

)−1
. Therefore,

JT
(
JJT + λ2I

)−1
= V DT

(
DDT + λ2I

)−1
UT = V EUT (3.25)

where E is an n×m diagonal matrix with entries

ei,i =
σi

σ2
i + λ2

(3.26)

Thus, the pseudo-inverse DLS solution can be expressed in the form

JT
(
JJT + λ2I

)−1
=

r∑
i=1

σi
σ2
i + λ2

viu
T
i (3.27)

Comparing the pseudo-inverse DLS with the simple pseudo-inverse method, we observe that

in both cases the Jacobian is inverted by an expression
∑n

i=1 τiviu
T
i . In the case of the simple

pseudo-inverse τi = σ−1
i , whereas for the pseudo-inverse DLS method, τi = σi/(σ

2
i + λ2). The

simple pseudo-inverse method is unstable as σi approaches zero. Pseudo-inverse DLS acts

similarly to the simple version away from singularities, but smooths out the performance of

the simple pseudo-inverse method in areas close to singularities.

Selectively Damped Least Squares

The Selectively Damped Least Squares (SDLS) method was presented by Buss and Kim in

[BK05] and is an extension of the pseudo-inverse Damped Least Squares method. SDLS

adjusts the damping factor separately for each singular vector of the Jacobian SVD based

on the difficulty of reaching the target positions. The damping constants of SDLS depend

not only on the current configuration of the articulated multibody, but also on the relative

positions of the end effector and the target position. This method converges in fewer iterations

and does not require ad hoc damping constants. SDLS also performs better than any other

inverse Jacobian method when multiple end effectors exist. The DLS and pseudo-inverse DLS

methods are computationally cheaper and easier to code than the SDLS method; however,

SDLS offers improved performance for applications where runtime is not restricted and where

it is difficult to choose a good damping constant.

Incorporating constraints

There exist several ways to improve the performance and increase the realism of an animation;

one of these is to incorporate constraints. However, implementing constraints in the Jacobian

family of methods is not straightforward. A simple projection of the unconstrained solution
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onto a feasible posture has been proposed in [Wel93]. However, it is not guaranteed that

the result will lie close to an optimal solution. A penalty-based method adding movement

restrictions is presented in [F0̂3], with the drawback that this often converges to poor results.

The simplest way of incorporating constraints can be achieved by weighting the moves of the

individual joints [MM05]. Given an update vector p and a weight matrix W , where W = wT I

and w is a vector of weights on the individual joints, the weighted update pw is given by

pw = Wp.

Feedback Inverse Kinematics

The Feedback Inverse Kinematics (FIK) method [Pec08] solves the inverse kinematics problem

from a control prospective, minimising the difference between demanded and actual Cartesian

velocities. Within the feedback loop, the required joint parameters are derived through a

control sensitivity function. The algorithm operates as a filter and does not require matrix

manipulations (inversion or singular value decomposition). Singularities are handled without

the necessity of a damping factor and this makes it computationally more efficient than pseudo-

inverse based methods. [Pec08] also describes how manipulator constraints can be applied,

weighting both joints and end-effectors to a more feasible set of postures. As with the other

Jacobian-based algorithms, it can easily handle problems with multiple end effectors.

3.2.2. Newton methods

The Newton family of methods is based on a second order Taylor series expansion of the object

function f(x):

f(x+ σ) ≈ f(x) + [∇f(x)]T σ +
1

2
σTHf (x)σ (3.28)

where Hf (x) is the Hessian matrix. However, the calculation of the Hessian matrix is very

complex and results in high computational cost for each iteration. Hence, several approaches

have been proposed which, instead of calculating the Hessian matrix, use an approximation

of the Hessian matrix based on a function gradient value. The most well known methods are

Broyden’s method, Powell’s method and the Broyden, Fletcher, Goldfarb and Shanno (BFGS)

method [Fle87, CKM97].

Since the Newton methods are posed as a minimisation problem, they return smooth motion

without erratic discontinuities. It is also straightforward to incorporate joint restrictions. The

most obvious method for constraints is the gradient projection method proposed by Zhao in

[ZB94]. The Newton methods also have the advantage that they do not suffer from singularity

problems, such as that which occurs when finding the Jacobian Inverse; however they are

complex, difficult to implement and have high computational cost per iteration.
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3.2.3. IK using Sequential Monte Carlo Methods

Sequential Monte Carlo Methods (SMCM) have been recently introduced for solving IK prob-

lems. Courty and Arnaud in [CA08] proposed such a solution based on the sampling principle.

Using a sampling approach, the inverse kinematics problem can be solved with forward kine-

matics, hence the numerical inversion of the forward operator can be avoided. The problem

is cast as a hidden Markov model (HMM), whose hidden state is given by all the parameters

that define the articulated figure. Hence, the state space consists of all the possible configura-

tions of the state. The inverse kinematics is then reformulated in a filtering framework. The

proposed SMCM IK solver does not require explicit numerical inversion and joint restrictions

can be added to the system in an intuitive manner. These can be easily implemented without

the need for complex optimisation algorithms. A particle IK solver has also been implemented

in [HRE+08] which uses a body pose goals set and attempts to satisfy the goals by forming a

system of constraints over the linked character bodies.

3.2.4. Style or mesh-based Inverse Kinematics

[GMHP04] presents a style-based IK method which is based on a learned model of human

poses. Given a set of constraints, the proposed system can produce, in real-time, the most

likely pose satisfying those constraints. The model has been trained on different input data

that leads to different styles of IK; it can generate any pose, but poses are highly related to

those which are most similar to the space of poses in the training data. In [SZGP05], a mesh-

based Inverse kinematics (mesh-IK) has been implemented which, instead of using human

styles as training data, learns the space of meaningful shapes from example meshes. Using

the learned space, mesh-IK generates new shapes that respect the deformations exhibited by

the examples, yet still satisfy vertex constraints imposed by the user. [DSP06] describes an

extension of the mesh-IK method which provides interactive control of reduced deformable

models via an intuitive IK framework. The collection of transformations compactly represents

articulated character movement that has been derived automatically from example data. The

IK problem is formulated in a reduced space to achieve an independent resolution performance,

meaning the speed of the posing task is a function of the model parameters rather than of

character geometry. However, this family of methods requires an off-line training procedure

and the results are highly dependent on the training data and limited only to those models

and movements the system has been trained on.

3.2.5. Heuristic Inverse Kinematics algorithms

Cyclic Coordinate Descent

Cyclic Coordinate Descent (CCD), which was first introduced by [WC91] and then biomechan-

ically constrained by [Wel93], is an iterative heuristic technique that is suitable for interactive

control of an articulated body. CCD is one of the most popular IK iterative algorithms; it

has been implemented in many computer graphic and robotics applications and is extensively
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Figure 3.6.: An example of visual solution of the IK problem using the CCD algorithm. (a) The
initial position of the manipulator and the target, (b) find the angle θ between the end effector, joint p3

and the target and rotate the joint p4 by this angle, (c) find the angle θ between the end effector, joint
p2 and the target and rotate joints p4 and p3 by this angle, (d), (e) and (f) repeat the whole process for
as many iterations as needed. Stop when the end effector reaches the target or gets sufficiently close.

used for solving the inverse kinematic problem in the computer games industry (e.g. [Lan98]).

CCD has also been effectively used in protein science for protein structure prediction and/or

structure determination [CD03].

CCD provides a numerically stable solution and it has linear-time complexity in the number

of degrees of freedom (DoF). The CCD method attempts to minimise position and orientation

errors by transforming one joint variable at a time. The algorithm states that, starting from

the end effector inward towards the manipulator base, each joint must be transformed in order

to move the end effector as close as possible to the target. This procedure is repeated until a

satisfactory solution is obtained. CCD is a heuristic iterative method with low computational

cost for each joint per iteration, which can solve the IK problem without matrix manipulations;

thus it formulates a solution very quickly. Figure 3.6 gives a visual solution of the IK problem

using the CCD algorithm executing over a number of iterations.

Like other inverse kinematics algorithms, CCD can generate many different resulting pos-

tures for a given initial posture. It is then very difficult to choose a feasible posture among

these many resulting postures. Therefore, manipulator constraints must be incorporated to

restrict motions to a feasible set. In CCD it is easy to apply local constraints but it is more

difficult to implement global manipulation restrictions.

CCD is a very quick method but it is not free from problems; it suffers from unrealistic anima-
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tion, even if manipulator constraints have been incorporated, and often produces motion with

erratic discontinuities. CCD also tends to overemphasise the movements of the joints closer to

the end effector of the kinematic chains, producing an unnatural movement, even if constraints

have been incorporated. CCD is designed to handle serial chains; however multiple goals are

necessary for most graphics and robotics applications. It is, however, non-straightforward to

extend it to problems with multiple targets and end effectors. [MD04] describes such a tech-

nique, which deals with tree articulated structures. The proposed multiple-chain CCD method

can be applied successively over multiple articulated chains; it divides the articulated structure

into smaller serial chains and treats each chain independently. [KM05] also adopted the CCD

kinematic algorithm and solved its crucial problem of resulting unnatural poses. The proposed

extension in [KM05] is able to solve problems with humanoid hierarchy, dividing the whole

body into groups of joints near an end effector (typically head, trunk, arms and legs). In order

to satisfy the desired centre of mass, the lightest group moves first, adjusting its centre of mass

by changing the length of the limb and rotating it (assuming it as a rigid body).

Inductive Inverse Kinematics algorithm: The Inductive Inverse Kinematics (IIK) al-

gorithm [KLC+03] is an extension of the CCD algorithm; it uses a Uniform Posture Map

(UPM) to control the posture of a human-like 3D character. The UPM is organised through

the quantisation of various postures with an unsupervised learning algorithm, and the learning

algorithm prevents the generating of invalid output neurons. The IIK algorithm can be formed

by implementing a forward kinematic table containing the forward kinematics values of each

output neuron. Thereafter, the forward kinematics table is searched to find the point with the

smallest distance from the desired point, and to choose the posture vector associated with that

point. If the current end point needs to be made closer to its target position, traditional CCD

can be used in the final phase of the algorithm. It is guaranteed that the postures generated

by the UPM are realistic postures which observe physical constraints. Hence it is possible to

get a natural posture by finding a posture whose forward kinematics point is closest to the

desired position.

Triangulation Inverse Kinematics

Another method which does not use an iterative approach is presented in [MCM07]. The

Triangulation algorithm uses the cosine rule to calculate each joint angle starting at the root of

the kinematic chain moving outward towards the end effector. It is guaranteed to find a solution

when used with unconstrained joints and when the target is in range. The Triangulation

algorithm incurs a lower computational cost than the CCD algorithm, since it needs only

1 iteration to reach the target. However, the results are not realistic. The joints close to

the end-effector are usually in a straight line, with the emphasis on rotation of the joints

neighbouring the root. The Triangulation IK method can only be applied to problems with

a single end effector; kinematic chains with multiple end effectors cannot be solved and it

cannot therefore be used for complex character models. Another drawback of this algorithm is

that, when constraints are applied, the end effector often cannot reach the target, even if there
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is a solution. This happens because each joint position is calculated independently without

considering the restrictions of the next joint. An improved version is given in [Muk09] where

the n-link IK problem is reduced into a two-link problem, making sure that each link is rotated

at most once in an attempt to reach the target position.

Sequential Inverse Kinematics

Sequential Inverse Kinematics (SIK), which is presented in [UPBS08], is a direct extension

of [BVU+06]. The SIK is an analytic-iterative IK method that reconstructs 3d human full-

body movements in real-time. The inputs to this method are end effector positions, such as

wrists, ankles, head and pelvis (the least possible input in order to be usable within a low-cost

motion capture system in real-time), which are used to find the human pose. The IK problem

is then solved sequentially using simple analytic-iterative IK algorithms (for instance CCD), in

different parts of the body, in a specific order. The SIK, according to [UPBS08], outperforms

many IK methods regarding the joint average position error, the joint average orientation error

and the median processing time of each methodology.

3.3. FABRIK: A New Heuristic IK Methodology

In this section, a new heuristic method for solving the IK problem, FABRIK [AL10d], is

presented. It uses the previously calculated positions of the joints to find the updates in

a forward and backward iterative mode. FABRIK involves minimising the system error by

adjusting each joint angle one at a time. The proposed method starts from the last joint of the

chain and works forwards, adjusting each joint along the way. Thereafter, it works backward

in the same way, in order to complete a full iteration. This method, instead of using angle

rotations, treats finding the joint locations as a problem of finding a point on a line; hence,

time and computation can be saved.

Assume p1, ...,pn are the joint positions of a manipulator. Also, assume that p1 is the root

joint and pn is the end effector, for the simple case where only a single end effector exists.

The target is symbolised as t and the initial base position by b. FABRIK is illustrated in

pseudo-code in Algorithm 1 and a graphical representation of its full iteration with a single

target and 4 joints is presented and explained in figure 3.7.

First calculate the distances between each joint di = |pi+1 − pi|, for i = 1, ..., n − 1. Then,

check whether the target is reachable or not; find the distance between the root and the

target, dist, and if this distance is smaller than the total sum of all the inter-joint distances,

dist <
∑n−1

1 di, the target is within reach, otherwise, it is unreachable. If the target is within

reach, a full iteration is constituted by two stages. In the first stage, the algorithm estimates

each joint position starting from the end-effector, pn, moving inwards to the manipulator base,

p1. So, let the new position of the end-effector be the target position, p′
n = t. Find the line,

ln−1, which passes through the joint positions pn−1 and p′
n. The new position of the (n− 1)th

joint, p′
n−1, lies on that line with distance dn−1 from p′

n. Similarly, the new position of the

(n − 2)th joint, p′
n−2, can be calculated using the line ln−2, which passes through pn−2 and
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Figure 3.7.: An example of a full iteration of FABRIK for the case of a single target and 4 manipulator
joints. (a) The initial position of the manipulator and the target, (b) move the end effector p4 to the
target, (c) find the joint p′

3 which lies on the line l3 that passes through the points p′
4 and p3, and has

distance d3 from the joint p′
4, (d) continue the algorithm for the rest of the joints, (e) the second stage

of the algorithm: move the root joint p′
1 to its initial position, (f) repeat the same procedure but this

time start from the base and move outwards to the end effector. The algorithm is repeated until the
position of the end effector reaches the target or gets sufficiently close.

p′
n−1, and has distance dn−2 from p′

n−1. The algorithm continues until all new joint positions

are calculated, including the root, p′
1.

Having in mind that the new position of the manipulator base, p′
1, should not be different

from its initial position, a second stage of the algorithm is needed. A full iteration is completed

when the same procedure is repeated but this time starting from the root joint and moving

outwards to the end effector. Thus, let the new position for the 1st joint, p′′
1, be its initial

position b. Then, using the line l1 that passes through the points p′′
1 and p′

2, we define the new

position of the joint p′′
2 as the point on that line with distance d1 from p′′

1. This procedure is

repeated for all the remaining joints, including the end effector. In cases where the root joint

has to be translated to a desired position, FABRIK works as described with the difference that

in the backward phase of the algorithm, the new position of the root joint, p′′
1, will be the

desired and not the initial position.

After one complete iteration, it is always the case (observed empirically) that the end effector

is closer to the target. The procedure is then repeated, for as many iterations as needed, until

the end effector is identical or close enough (to be defined) to the desired target. FABRIK

always converges to any given chains/goal positions, when the target is within reach. If there

are constraints which do not allow the chain to bend enough in order to reach the target or if

the target is not within the reachable area, there is a termination condition which compares
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the previous and the current position of the end effector, and if this distance is less than an

indicated tolerance, FABRIK terminates its operation. Also, in the extreme case where the

number of iterations has exceeded an indicated value and the target has not been reached, the

algorithm is terminated (however, we have never encountered such a situation).

Several optimisations can be achieved using Conformal Geometric Algebra (CGA) [HS84,

DL03] to produce faster results and to converge to the final answer in fewer iterations; CGA

has the advantage that basic entities, such as spheres, lines, planes and circles, are simply

represented by algebraic objects. Therefore, a direct estimate of a missing joint, when it is

between 2 true positions, can be achieved by intersecting 2 spheres with centres the true joint

positions and radii the distances between the estimated and the true joints respectively; the

new joint position will be taken as the point on the circle (created by the intersection of the

2 spheres) nearest to the previous joint position. Another simple optimisation is the direct

construction of a line pointing towards the target, when the latter is unreachable. A similar

solution of the algorithm using CGA is given in Appendix A.5 and [AL10a].

The proposed method has all the advantages of existing iterative heuristic algorithms. The

computational cost for each joint per iteration is low, meaning the solution is arrived at very

quickly. It is also very easy to implement, since it is simply a problem involving points, distances

and lines and always returns a solution when the target is in range. It does not require complex

calculations (e.g Jacobian or Hessian matrix) or matrix manipulations (inversion or singular

value decomposition), it does not suffer from singularity problems and returns smooth motion

without erratic discontinuities.

A singularity problem might occur when the chain is completely straight and the target is

located on that alignment but between two joints (on the bone). In such an instance, FABRIK

does not converge to a solution but enters to an infinite loop (a similar problem is encountered

in the CCD algorithm). The solution is to choose a very small angle in the beginning of the

backward stage of the algorithm, in order to allow the chain to bend into a direction that

satisfies the user constraints.

3.3.1. FABRIK with multiple end effectors

IK solvers are commonly used for solving the IK problem in many areas including computer

graphics, gaming and protein science. In reality, most of the multibody models, such as

hands, human or legged bodies etc, are comprised of several kinematic chains, and each chain

generally has more than 1 end effector. Therefore, it is essential for an IK solver to be able

to solve problems with multiple end effectors and targets. The proposed algorithm can be

easily extended to process models with multiple end effectors. However, prior knowledge of

the model, such as the sub-base2 joints, and the number and structure of chains is needed.

The algorithm is divided into two stages, as in the single end effector case. In the first stage,

the normal algorithm is applied but this time starting from each end effector and moving

inwards to the parent sub-base. This will produce as many different positions of the sub-base

2A sub-base joint is a joint which connects 2 or more chains. A pre-analysis of the body can determine exactly
where the sub-bases are located.
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Algorithm 1: A full iteration of the FABRIK algorithm.
Input: The joint positions pi for i = 1, ..., n., the target position t and the distances between each

joint di = |pi+1 − pi| for i = 1, ..., n− 1.
Output: The new joint positions pi for i = 1, ..., n.

1.1 % The distance between root and target
1.2 dist = |p1 − t|
1.3 % Check whether the target is within reach
1.4 if dist > d1 + d2 + ...+ dn−1 then
1.5 % The target is unreachable
1.6 for i = 1, ..., n− 1 do
1.7 % Find the distance ri between the target t and the joint position pi

1.8 ri = |t− pi|
1.9 λi = di/ri

1.10 % Find the new joint positions pi.
1.11 pi+1 = (1− λi)pi + λit

1.12 end

1.13 else
1.14 % The target is reachable; thus, set as b the initial position of the joint p1

1.15 b = p1

1.16 % Check whether the distance between the end effector pn and the target t is greater than a
tolerance.

1.17 difA = |pn − t|
1.18 while difA > tol do
1.19 % STAGE 1: FORWARD REACHING
1.20 % Set the end effector pn as target t
1.21 pn = t
1.22 for i = n− 1, ..., 1 do
1.23 % Find the distance ri between the new joint position pi+1 and the joint pi

1.24 ri = |pi+1 − pi|
1.25 λi = di/ri
1.26 % Find the new joint positions pi.
1.27 pi = (1− λi)pi+1 + λipi

1.28 end
1.29 % STAGE 2: BACKWARD REACHING
1.30 % Set the root p1 its initial position.
1.31 p1 = b
1.32 for i = 1, ..., n− 1 do
1.33 % Find the distance ri between the new joint position pi and the joint pi+1

1.34 ri = |pi+1 − pi|
1.35 λi = di/ri
1.36 % Find the new joint positions pi.
1.37 pi+1 = (1− λi)pi + λipi+1

1.38 end
1.39 difA = |pn − t|
1.40 end

1.41 end

as the number of end effectors connected with that specific sub-base. The new position of

the sub-base will then be the centroid of all these positions. Thereafter, the normal algorithm

should be applied inwards starting from the sub-base to the manipulator root. If there are more

intermediate sub-bases, the same technique should be used. In the second stage, the normal

algorithm is applied starting now from the root and moving outwards to the sub-base. Then,

the algorithm should be applied separately for each chain until the end effector is reached;

if more sub-bases exist, the same process is applied. The method is repeated until all end

effectors reach the targets or there is no significant change between their previous and their
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Figure 3.8.: An example of a model figure with multiple end effectors and multiple sub-bases.

new positions. An example of a model figure having multiple end effectors and sub-bases is

presented in figure 3.8.

More sophisticated (and complex) models can be also tackled. Extending the proposed

algorithm to take into account the figure’s shape, constraints and properties, will reduce the

number of iterations needed to reach the target and will return more feasible postures. For

example, FABRIK has been successfully applied to real-time hand tracking and reconstruction

in motion capture, as it is presented in Chapter 5 and published in [AL10a, AL10b].

3.3.2. FABRIK within closed loops

FABRIK can also cope with cases where the “end effector” is not positioned at the end of the

chain (i.e. it is a leaf) in the same way as for the sub-bases described in section 3.3.1. The

whole model could be divided into groups of joints near the end effectors (such as head, trunk,

arms and legs) and then sequentially adapt the body postures in a specific order, similarly to

[UPBS08] and [KM05]. Obviously, the adaption hierarchy varies between models. An example

where FABRIK has been successfully adjusted within closed loops of a humanoid, achieving

real-time centre of rotation correction in motion capture, under marker occlusions is presented

in Chapter 4 and been published in [AL10c].

3.4. Applying Joint Constraints to FABRIK

Most legged body models are comprised of joints having biomechanical constraints, which

provide natural restrictions on their motion. Such constraints are essential in physical simu-

lations, IK techniques and tracking in motion capture systems to reduce visually unrealistic

movements.

A joint is defined by its position and orientation and, in the most general case, has 3 DoF. A

bone rotation can be described by factoring it into two rotations: one “simple rotation”, named
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Figure 3.9.: The target is re-positioned within the allowed range of motion which is defined by the
conic section. There are 3 types of joint restriction, as described by the angles θ1, ..., θ4: (a) a circle,
(b) an ellipsoidal shape and (c) a parabolic shape.

here as rotational (2 DoF), that moves the bone to its final direction vector, and another which

we call orientational (1 DoF), which represents the twist around this final vector. Thus, the

range of movement of a bone can be controlled by dividing the joint restriction procedure into

two interconnected phases, a rotational and an orientational phase, contributing equally to the

joint restrictions. The essential feature of a joint is that it permits a relative motion between

the two limbs it connects. Most of the existing structure models, such as those described

above, use techniques which restrict the bone to lie within the rotational and orientational

limits of the joint. Blow [Blo02] proposes a loop hung in space, limiting the range of motion of

the bone to “reach windows” described by star polygons. Wilhelms and Van Gelder [WG01]

present a 3D “reach cone” methodology using planes, treating the joint limits in the same way

as [Blo02]. [Kor85, BB01] parameterise realistic joint boundaries of the ball-and-socket joint

by decomposing the arbitrary orientation into two components and controlling the rotational

joint limits so they do not exceed their bounds. Once a proper parametrisation is defined for

each joint of the articulated body, an animation engine is utilised.

3.4.1. Restricting the motion to the allowed bounds

In this section, a reliable methodology for incorporating manipulator constraints is described

using FABRIK. Since FABRIK is iterative, the joint restrictions can be enforced at each step

just by taking the resultant orientation and forcing it to stay within the valid range. FABRIK’s

ability to converge to an answer, if the target is within reach, is not affected by any imposed

joint limits.

The main idea behind this methodology is the re-positioning and re-orientation of the target

to be within the allowed range bounds; ensuring that these restrictions are always satisfied

means a more feasible posture can be achieved. This can be accomplished by checking if the

target is within the valid bounds, at each step of FABRIK, and if it is not, to guarantee that

it will be moved accordingly. In contrast to most existing techniques for joint constraints,

the proposed methodology simplifies the 3D problem into a 2D problem, meaning that the

complexity and the required processing time is reduced. In this chapter, a joint restriction
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Figure 3.10.: A graphical representation of the implemented constraints and the irregular cone
describing the rotational motion bounds. (a) The ball-and-socket joint, pi, with its associated irregular
cone which defines the allowed range of motion. (b) Shows the composite ellipsoidal shape created by
the distances qj mapped from 3D to 2D.

Algorithm 2: The orientational constraints.
Input: The rotor R expressing the rotation between the orientation frames at joints pi and pi−1.
Output: The new re-oriented joint p′

i−1.
2.1 Check whether the rotor R is within the motion range bounds
2.2 if within the bounds then
2.3 do nothing and exit
2.4 else
2.5 reorient the joint pi−1 in such a way that the rotor will be within the limits
2.6 end

methodology is presented for the general case of a ball and socket joint; this example should

be considered an illustration of how joint or model constraints can be incorporated within

FABRIK.

Assume we have a ball-and-socket joint with orientational limits described by the rotor R

and rotational limits described by the angles θ1, ..., θ4. A graphical representation of a joint

limit boundary could be an irregular cone which is defined by these angles. The rotational

limits are enforced by re-positioning the target point as the nearest point on a conic section

from the target position; this procedure is described in detail later. There are 3 possible conic

sections, according to the angles defining the irregular cone: if all θs are equal, the conic section

is a circle; if all θs are greater or smaller than 90o and are not equal, the conic section has

an ellipsoidal shape; finally, if there are θs both greater and smaller than 90o, then the joint

boundary limits are defined by a parabolic shape, as illustrated in figure 3.9. In the subsequent

analysis shown here, the joint limits are assumed to be defined by an ellipsoidal shape, since

this is the most common case, but similar procedures apply for different conic sections. Figure

3.10 gives a graphical representation of the implemented constraints and the irregular cone

describing the rotational motion bounds for the case of an ellipsoidal shape.

The orientation of the joint can be assigned as follows: Assume we are in the first stage of

the algorithm, i.e. we have just calculated the new position of joint p′
i, and we want to find

the new position of the (i − 1)th joint, p′
i−1. Find the rotor expressing the rotation between
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Algorithm 3: The rotational constraints.
Input: The target position t and the angles defining the rotation constraints θj for j = 1, ..., 4.
Output: The new target position t′.

3.1 Find the line equation L1

3.2 Find the projection O of the target t on line L1

3.3 Find the distance between the point O and the joint position
3.4 Map the target (rotate and translate) in such a way that O is now located at the axis origin and

oriented according to the x and y-axis ⇒ Now it is a 2D simplified problem
3.5 Find in which quadrant the target belongs
3.6 Find what conic section describes the allowed range of motion
3.7 Find the conic section which is associated with that quadrant using the distances qj = S tan θj ,

where j = 1, .., 4
3.8 Check whether the target is within the conic section or not
3.9 if within the conic section then

3.10 use the true target position t
3.11 else
3.12 Find the nearest point on that conic section from the target
3.13 Map (rotate and translate) that point on the conic section via reverse of 3.4 and use that point

as the new target position
3.14 end

the orientation frames at joints p′
i and pi−1 and if this rotor represents a rotation greater

than a limit, reorient the joint pi−1 in such a way that the rotation will be within the limits.

Repeat the procedure for all the joints on both stages of the algorithm. The methodology is

also described in pseudo-code in Algorithm 2.

Once the joint orientation is established, the rotational (2 DoF) limits, described by angles

θ1, ..., θ4, can be applied as follows. Firstly, we find the projection O of the target t on line L1,

where L1 is the line passing through the joint under consideration, pi, and the previous joint of

the chain, pi+1. Then determine the distance S from the point O to the joint position pi and

calculate the distances qj = S tan(θj), for j = 1, ..., 4, as shown in figure 3.10. We then apply a

rotation and translation which takes O to the origin and the axes defining the constraints to the

x and y axes, as in figure 3.10(b). Working in this 2D plane, we locate the target in a particular

quadrant and find the ellipse defined on that quadrant using the associated distances qj ; for

example, in figure 3.10(b) we are working with the ellipse which is defined by the angles θ2 and

θ3 (or the distances q2 and q3). Finally, find the nearest point on that ellipse from the target,

if the latter is not in the allowed motion range. The nearest point on an ellipse from a point

can be found by simultaneously solving the ellipse equation and the equation of the tangent

line at the orthogonal contacting point on the ellipse using the Newton-Raphson method, as

described in [ARW01]. Obviously, it is not necessary to calculate all the ellipses which define

the composite ellipsoidal shape of figure 3.10(b), but only the ellipse related to the quadrant in

which the target is located. It is important here to recall that, if the constraints which define

the allowed range of motion are described by a different conic section (circle or parabola),

the target should be re-positioned as the nearest point on that conic section, similarly to the

ellipsoidal case. The last step is to undo the initial transformation which mapped O to the

origin. This procedure is illustrated in pseudo-code in Algorithm 3 and a demonstration of the

process is given in figure 3.12.

This is a versatile, and easily visualisable, method of restricting where the bone can go.
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Figure 3.11.: Solution for special joint restriction cases: (a) the original case and when the allowed
range of motion is greater than 180 degrees, (b) when the target is located on a different hemisphere
than the irregular cone.

Incorporating this methodology within an IK solver, such as FABRIK, will give us the oppor-

tunity to reconstruct or track animated figures with high accuracy. IK algorithms are generally

more effective if the constraints are applied at each step (not at the end of the algorithm),

ensuring that the rotational and orientational restrictions are satisfied at each iteration. Thus,

the proposed joint constraints can be applied within FABRIK by ensuring that the target, at

each step, is moved to be within the allowed orientational and rotational bounds. Hence, as-

sume that we are in the first stage of the algorithm, and have just calculated the new positions

of the joints, p′
i+1 and p′

i, and we want to find the new position of the (i − 1)th joint, p′
i−1.

Check if the joint pi−1 satisfies the orientational limits and if so, check whether it is within

the composite ellipsoidal shape that describes the allowed range bounds, as illustrated above.

If it is not, then pi−1 should be re-oriented and/or re-positioned within the allowed bounds

(p̂i−1). Thereafter, p
′
i−1 can be defined as the point on the line li−1, which passes through the

joint positions p̂i−1 and p′
i and has di−1 distance from p′

i, as is illustrated in figure 3.12.

The same technique for constraining joints is applied in the second stage of the algorithm

and for each iteration until the target is reached or there is no significant change in the end

effectors’ positions. The algorithm copes with joints and limbs having 3 DoF, and it can handle

cases of joint and limb twist. It is important to recall here that the inter-joint lengths are not

changing over time since these distances are implicity kept constant by FABRIK.

The proposed restriction methodology can be easily extended to manage joints limits greater

than 180 degrees. For instance, when the angle which defines the allowed range of motion is

greater than 180 degrees, the associated irregular cone will define the area which is outside
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Figure 3.12.: Incorporating rotational and orientational constraints within FABRIK. (a) The initial
configuration of the manipulator and the target, (b) relocate and reorient joint p4 to target t, (c) move
joint p3 to p′

3, which lies on the line that passes through the points p′
4 and p3 and has distance d3 from

p′
4, (d) reorient joint p′

3 in such a way that the rotor expressing the rotation between the orientation
frames at joints p′

3 and p′
4 is within the motion range bounds, (e) the rotational constraints: the allowed

regions shown as a shaded composite ellipsoidal shape, (f) the joint position p2 is relocated to a new
position, p̂2, which is the nearest point on that composite ellipsoidal shape from p2, ensuring that the
new joint position p′

2 will be within the allowed rotational range. (g) move p̂2 to p′
2, to conserve bone

length, (h) reorient the joint p′
2 in order to satisfy the orientation limits. This procedure is repeated

for all the remaining joints in a forward and backward fashion.

the limits. In that case, the joint restriction methodology will work in a reverse fashion; if the

target is within the irregular cone area, meaning it is outside the limits, it will be projected to

the cone surface, as is demonstrated in figure 3.11(a). Another special case of joint restriction

occurs when the target is located in such a position that is not in the same hemisphere (in

figure 3.11(b), the upper hemisphere) as the irregular cone. The limits of motion are defined as

the irregular cone in the upper hemisphere and a reflection of the cone in the lower hemisphere;

the target in the lower hemisphere is projected onto the limit boundary by first projecting its

position onto the reflected cone and taking the associated point on the regular cone, as shown

in figure 3.11(b). Obviously, the algorithm works in a similar way for different conic sections.

One big advantage of the proposed methodology is that no bone requires rotation to lie in

any cone or polygon window, such as those described in [Blo02, WG01]; it is only necessary to

check whether the target is within the composite ellipsoidal shape defined by the restrictions

on the motion. It loses none of the advantages of the FABRIK algorithm, incorporating

joint limits via only points, lines and basic 2D entities; no rotational matrices need to be

calculated, resulting in large savings in computational time. It also produces visually smooth

and natural movements without oscillations and discontinuities, and requires low processing

time per iteration. If it is desirable to retrieve the joint angles, all necessary information is of
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Figure 3.13.: Incorporating constraints for a hinge joint. (a) The initial configuration of the manip-
ulator and the target. Since p2 is a hinge joint with 2 DoF, all joints lie in the plane Φ1. The root and
the target, which is oriented, also define the plane Φ2. (b) Relocate and reorient joint p′

3 to target t.
Then, project p2 onto the plane Φ2 to give a new point p̂2, and find the point p′

2 on line l2 that passes
from the joint position p′

3 and the projected joint position p̂2 and has distance d2 from p′
3. Reorient

the new joint using the orientation constraints. (c) move and reorient joint p1 to p′
1, which lies on the

line that passes through the points p′
2 and p1 and has distance d3 from p′

4, (d) The problem is now
again a 2D problem and all joints lie on plane Φ2. Thus, the prototype version of FABRIK can be
applied to all the remaining joints in a forward and backward fashion.

course avialable (position and orientation of each joint).

If more information about the allowed range of motion is available, the proposed methodology

can be extended to include increased sophistication, supporting more complex joint types.

Thus, instead of having an ellipsoidal entity to describe the sub-area in which the target can

be placed, a polygonal area can be implemented. If the target is out of range, we would look

for the nearest point on the polygon.

The constraining methodology can also be easily modified to support other IK solvers. There

are, however, some limitations on what joint types this prototype version can support, since

it is assumed that the inter-joint distance remains constant over time. Prismatic, sliding or

shifting joints (joint types more usually discussed in robotics) are not supported. Self-collisions

can be handled using existing techniques, such as [LG98]; but more work is needed to ascertain

if the FABRIK framework gives any advantages when dealing with self occlusions.

Having in mind that the target should be reoriented and repositioned in such a way as

it satisfy the user or the model constraints, different joint models can be formulated using
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(a) (b) (c) (d)

Figure 3.14.: The structure of the models used in our experimental examples. (a) A kinematic chain
consisting of 10 joints and 1 end effector. There are 2 kinematic chain models, an unconstrained and a
constrained version, (b) a kinematic model with 10 unconstrained joints and 2 end effectors, (c) a hand
model with 26 unconstrained joints and 5 end effectors, (d) a 13 joint humanoid model, in a constrained
and unconstrained version, with 4 end effectors. The target joint positions (end effectors) are shown in
red and the joint positions that the IK solvers have to estimate are shown in green.

similar techniques. For instance, the joint limitations for simple 2D joint models, such as the

hinge joint, can be simplified using alternative approaches. Since FABRIK operates on the

joint coordinates by adjusting the positions in an iterative fashion, the 2D restrictions can be

enforced by projecting the joint onto the plane of orientation. That plane is defined by the root

and the (oriented) target position. An illustration showing how restrictions can be enforced for

a hinge manipulation is given in figure 3.13. Similar techniques can be applied to incorporate

constraints for different types of joint, in a variety of motions.

3.5. The Experimental Environment

A target database has been created for the validation and testing of the IK methods. The

database consists of reachable and unreachable targets, targets with different distances from

the end effectors and targets that move smoothly in space with end effectors tracking their

position. The tests also consist of reconstructing sequences with different classes of motion in

order to process different swivel angles and axial orientations of the root joint. The examples

are demonstrated in 6 different kinematic models; a chain with 10 unconstrained joints allowing

3 DoF on each joint; a chain with 10 constrained joints allowing limited angle rotations with 3

DoF; a model containing a ‘Y-shape’ having 10 unconstrained joints and 2 end effectors; a fully

unconstrained and un-modelled hand with 26 joints, 3 DoF on each joint and 5 end effectors;

and a 13 joint humanoid model, in a constrained and unconstrained version, with 3 DoF on

each joint and 4 end effectors. Figure 3.14 shows the different kinematic models used within

this work.

IK techniques will mostly work with specified positions and orientations of specific joints,

usually the end effectors, since they are more easily specified by the animator and tracked by the

motion capture system; thereby, they automatically configure the remaining joints according

to different criteria that depend on the model variant and joint type restrictions.
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(a) (b)

Figure 3.15.: The stages illustrated in order that the end effector reaches the target. (a) The FABRIK
solution and (b) the CCD solution.

3.6. Results

Some of the most popular IK methods have been tested against FABRIK, such as CCD,

Jacobian Transpose, Jacobian DLS and Jacobian pseudo-inverse DLS (SVD-DLS). In some

of our experiments, we implemented examples with large distances between target and end-

effectors; hence, some methods tend to require more iterations to reach the target and thus

the convergence differences are more obvious. The Jacobian and DLS parameter values used

in our experiments are the parameter values suggested by [BK05]; the damping constant was

set to λ = 1.1. Several tests and comparisons have been implemented between the proposed

algorithms in respect of their computational cost, processing time, convergence, the number

of iterations needed to reach the target and the reconstruction quality. All experiments were

run using MATLAB [MAT] on a computer with a Pentium 2 Duo 2.2 GHz processor. The

operating system used is Microsoft Windows Vista service pack 1.0. The results have been

animated in video sequences using Blender [Ble].

3.6.1. A single end effector

In this section, the methods have been tested on problems with a single end effector and fixed

target positions. These experiments did not include any joint constraints, but all methods

could be enhanced to enforce rotational and orientational limits. Examples with the resulting

postures for each methodology are presented in figure 3.19.

FABRIK produces results significantly faster than all IK methods tested. It is approximately

10 times faster than the CCD method and a thousand times faster than the Jacobian-based

methods, for these examples with large end effector movements; FABRIK has the lowest com-

putational cost and, at the same time, produces visually the smoothest and most natural

movements. It needs the fewest iterations to reach the target, it converges faster to the desired

position and, when the target is unreachable, it keeps the end effector pointing to the target.

Figure 3.15 shows an example of an IK solution using FABRIK and CCD; the figure presents
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Figure 3.16.: Unnatural joint angles exhibited by CCD; the kinematic chain rolls itself before reaching
the target, producing unrealistic poses.

all the stages before the kinematic chain reaches the target for both cases. It is clear that

FABRIK needs fewer iterations and has a more natural movement to the target. On average,

FABRIK needs 15.4 iterations and just 13.2ms to attain a reachable target and 67 iterations

and 62ms for an unreachable target. The time and iterations needed to converge to a final

answer, when the target is unreachable, can be reduced dramatically when algorithm optimi-

sations are applied (see Alg.1); using optimisations, FABRIK needs just 1 iteration and 0.2ms

to return the final chain pose. Obviously, as the target gets closer to the end effector, fewer

iterations will be needed to reach the target.

CCD can also be applied in real-time. It is much faster than any Jacobian-based method;

it needs, on average, 26 iterations and 123ms to reach the target when it is within reach. On

the other hand, when the target is not reachable, it needs almost 400 iterations and 4sec to

converge to its final solution (using the default algorithm without optimisations). However,

CCD can often generate unrealistic postures since it can roll and unroll itself before reaching

the target (figure 3.15 and 3.16). CCD also tends to overemphasise the movements of the

joints closer to the end effector of the kinematic chain. Another drawback of CCD is that it is

designed to handle problems with serial chains; it has to be modified in order to solve problems

with multiple end effectors [KM05].

The Jacobian methods return reasonable results; the reconstructed chain poses are visually

more natural than CCD. Nevertheless, the biggest advantage of the Jacobian methods over all

other methods is that, by default, they can treat problems with multiple end effectors very

easily. Constraints can be applied within the Jacobian algorithms, but the way in which these

restrictions are incorporated is not straightforward. Some Jacobian methods also suffer from

singularity problems, since matrix inverses need to be calculated. The Transpose and DLS

methods do not suffer in this way since they do not use the matrix inverse. The Jacobian

methods also incur high computational cost making this family of methods non-ideal for real-

time applications. For the examples considered here, the Jacobian Transpose method needs

on average more than 1300 iterations and 13sec to reach the target when it is within reach,

the DLS needs more than 990 iterations and 10sec and SVD-DLS more than 800 and 9sec.

The Jacobian methods generally converge very slowly to their final solutions since they use a

linear approximation with a small step. This is more obvious in figure 3.17, where the number

of iterations needed to reduce the distance between target and end effector as this changes
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Table 3.1.: Average results (over 20 runs) for a single kinematic chain with 10 joints.

Reachable Target Unreachable Target
Number of Matlab exe. Time per iteration Iterations Number of Matlab exe.
Iterations time (sec) (in msec) per second Iterations time (sec)

FABRIK 15.461 0.01328 0.8 1164 67.564 0.06207
CCD 26.308 0.12356 8.8 213 390.135 3.92869
Jacobian Transpose 1311.190 12.98947 9.9 101 6549.000 33.90473
Jacobian DLS 998.648 10.48051 10.5 95 2881.667 14.87918
Jacobian SVD-DLS 808.797 9.29652 11.5 87 2808.452 15.97591

over time is presented for each methodology. In this example, the original chain is 9000mm

long, the distance between target and end effector is 6000mm, and the termination tolerance

is 1× 10−3mm.

The Triangulation algorithm also incurs lower computational cost than the CCD algorithm

and it is substantially faster than the Jacobian methods. However, Triangulation returns the

poorest results from the methods used within this report. The kinematic chain does not have

a realistic shape; the joints close to the end-effector are usually in a straight line, with the

emphasis on rotation of the joints neighbouring the root. Another important drawback of the

Triangulation algorithm is that it cannot be adapted for multiple end effectors, it is thus useless

for complex character models. The Triangulation algorithm also suffers from an inability to

reach a feasible solution when constraints are applied; the end effector often cannot reach the

target, even if there is a solution, since each joint position is calculated independently without

considering the restrictions of the next joint.

Table 3.1 presents the average runtimes of each of the methods, as well as the number of

iterations needed to reach the target, for both cases of a reachable and an unreachable target.

It also indicates on average the time needed per iteration for each method and how many

iterations per second each methodology can support for the case of a single chain with 10

joints and 1 end effector. Runtimes are in seconds and were measured with custom MATLAB

code on a Pentium 2 Duo 2.2 GHz. No optimisations were used for any method reported

in the table. It also indicates the time needed per iteration for each method and how many

iterations per second each methodology can support. An iteration of FABRIK has the lowest

computational cost since, instead of using angle rotations, it treats finding the joint locations

as a problem of finding a point on a line. Thus, it can process up to 1164 iterations in one

second, requiring 0.85ms per iteration. The time required for a full iteration using CCD is

8.8ms, where the Jacobian Transpose, DLS and SCD-DLS methods need 9.9ms, 10.5ms and

11.5ms per iteration respectively.

Figure 3.19 compares the performance of each algorithm for solving inverse kinematic prob-

lems; it shows the initial configuration and the goal solution obtained with each methodology.

The manipulator is fully unconstrained and has no limits on the range of allowed movement

for each joint. In each case a position goal is specified for the end effector and the inverse

kinematic problem is solved to varying degrees of accuracy. Figure 3.18 plots the convergence

of each method, meaning the time taken to achieve the solution with the requested degree of

accuracy. It is clearly observed that FABRIK converges to the target faster than any other
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Figure 3.17.: The iterations needed to reach the target against the distance between target and end
effector.
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Figure 3.18.: An example presenting the time needed for each methodology to achieve the solution
with the degree of accuracy requested.

implemented methodology. An iteration of FABRIK has the lowest computational cost and

figure 3.18 verifies that FABRIK always converges to the target, if the latter is reachable.

The FABRIK, CCD, DLS and SVD-DLS methods have also been tested when the target

is moving in a sinusoidal trajectory and the end-effector is tracking its position when it is

within reach, and keeping the end effector pointing at the target when it is unreachable. The

accuracy of the tracking was measured over a period of a thousand simulation steps. FABRIK

tracks the target in real-time producing smooth and visually natural motion without erratic

discontinuities. CCD produces reasonable results within the real-time constraints; however

there are instances where the motion produced is not visually realistic. It is important to

mention that CCD’s performance improves when the target is a small distance from the end

effector’s position or the frame rate is high. This happens because the kinematic chain does

not roll and unroll itself. On the other hand, the Jacobian-based methods can still produce

oscillating motion with discontinuities. Their biggest drawback however is the time needed

to track the target; only under some circumstances, eg using fast C++ matrix libraries, can

the Jacobian-based methods reach the target of real-time application. Although Triangulation

is a real-time methodology, it produces the most unrealistic poses for kinematic animations.

Figure 3.20 presents the performance of each method on selected frames over time.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 3.19.: Experimental solutions using some of the most popular IK methods. The kinematic
chains consisted of 10 unconstrained joints, allowing 3 degrees of freedom on each joint. (a) Initial
position, (b) FABRIK, (c) CCD, (d) J. Transpose, (e) J. DLS, (f) J. SVD-DLS, (g) Triangulation.

Making Kine more flexible

In this section we implemented the FABRIK algorithm within the Kine [Lan98] application;

Kine is a 2D real-time gaming application that initially has a kinematic chain with six joints.

Kine allows you to interact with the IK solver; you click on the screen and the snake (the

kinematic chain is drawn as a snake) solves the IK problem. There is also an option where you

click and drag on the screen and the snake attempts track your mouse. You are also able to

add more links, optimise orientation, and modify the application to a 3D environment.

Figure 3.21 shows examples of the FABRIK and CCD methods implemented within the Kine

environment when the end effector moves through large distances. It is clearly observed that

FABRIK out-performs CCD in producing smoother poses. The environment presented in this

section has been adopted from the work of Jeff Lander; we would like to express our enormous

thanks to Jeff for giving us permission to use his code and application. The Kine application



70 A Novel Inverse Kinematics Solver

(a)

(b)

(c)

(d)

(e)

Figure 3.20.: An example of the target tracking using different methods. The frames presented here
are the same for each methodology. (a) FABRIK, (b) CCD, (c) DLS, (d) SVD-DLS, (e) Triangulation

is included in the supplementary materials, offering the opportunity to interact and evaluate

the results in real-time.
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(a)

(b)

Figure 3.21.: FABRIK and CCD solution using the Kine application. (a) FABRIK, (b) CCD.

3.6.2. Multiple end effectors

Most real models, such as the hand, legged bodies etc, consist of multiple chains, each chain

having at least one end effector. Hence, it is essential to test our methodology in cases where

more than one end effector exists. To test FABRIK under these conditions, we implemented

the ‘Y-shaped’ multibody pictured in figure 3.22, also used in [BK05], and a hand multibody

presented in figure 3.23. The ‘Y-shape’ multibody has 10 joints with 2 end effectors. The

target positions (the red balls in the figures) moved in sinusoidally varying curves in and out

of reach of the multibody. The target positions moved in small increments and in each time

step the joint positions were updated. The simulations were visually inspected for oscillations

and tracking abilities. The end-effectors can successfully track the target positions when they

are within reach, and remain pointing at the targets when these are out of reach. Figure 3.22

presents a simple example of how FABRIK performs with multiple end effectors; although it

is hard to show in images, FABRIK can easily track both targets with a smooth motion and

without oscillations, shaking or erratic discontinuities.

Figure 3.23 shows another example of implementing FABRIK into a multiple end effector

model. This is a fully unconstrained hand example with 5 end effectors and 26 joints in total,

allowing 3 DoF on each joint. Incorporating a highly constrained model, such as [KL07], and

restricting the motion of each joint to a feasible set, the hand will have even more natural

movement. Such a model has been implemented and presented in Chapter 5.

Figure 3.24 shows an example of a tracking animation of a humanoid with 13 joints, 5 of

which are treated as end effectors. In this demonstration, the frame rate was low (3 frames per

second); the 3Hz frame rate selection increases the distance between target and end effector,

thus the performance of each method is more obvious. FABRIK can easily track the animated
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Figure 3.22.: Example of FABRIK implementation with multiple end effectors moving over time; a
kinematic chain with 10 unconstrained joints, 2 end effectors and 2 targets.

Table 3.2.: Reconstruction comparison. Average results (over 20 runs).

FABRIK CCD J.Transpose J.DLS J.SVD-DLS

Number of Iterations 65 67 1352 804 723

Median time† (msec) 1.6 20.5 1928 1533 1494

Time per iteration† (msec) 0.0246 0.3060 1.4334 1.9067 2.0664
Median Error (mm) 58.68 69.99 137.42 84.84 83.73

† This is a MATLAB executable time.

humanoid in real-time, producing very reasonable results. Figure 3.25 shows the reconstruction

quality of different methodologies over the same humanoid model. The differences between the

implemented methodologies, on these unconstrained humanoid examples, are more obvious on

shoulders, elbows and hips. FABRIK produces visually natural postures, having the smaller

reconstruction error compared to the original sequences. These animations have been obtained

from an optical markered motion capture system and have not been filtered; thus, the algorithm

is shown to be robust in noisy environments. Selected internal joints have been artificially

deleted in order to examine the reconstruction quality of each methodology. These humanoids

do not have a mesh that defines their external shape, so self collisions are not considered within

these reconstruction examples.

Table 3.2 shows the performance (over 20 runs) of each methodology for the case of a dancing

humanoid model. The computational cost and the reconstruction quality for tracking the

animated model is also presented. FABRIK gives the best results with respect to computational
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Figure 3.23.: Example of FABRIK implementation with multiple end effectors over time. This is a
fully unconstrained hand example, allowing 3 DoF on each joint.

cost and reconstruction quality; it requires the fewest iterations to achieve the desired posture

and produces visually the smoothest poses. The median error presented in table 3.2 refers

to the difference between the estimated joint positions and the true joint positions. A video

included in the supplementary materials demonstrates FABRIK and compares its performance

against other state of the art methods.

3.6.3. Applying restrictions

Most IK problems have rotational and orientational restrictions since most real world joints

have limitations on their movements. Joint constraints can be easily added to our proposed

methodology (see subsection 3.4.1). The experimental dataset used to test the reconstruction

quality of the constrained FABRIK is made up of 10 joints, each having angle rotational

restrictions allowing movements only within a range. The same humanoid model, as described

in section 3.6.2, is used to examine the reconstruction quality of the proposed methodology

with and without constraints.

FABRIK can be easily constrained producing visually realistic postures without oscillations

and discontinuities. The constrained version is slightly slower than its unconstrained coun-

terpart, requiring now almost 3.0ms to reach the target. Nevertheless, it is still much faster

than other IK methods and approximately 10 times faster than constrained CCD. The recon-

struction quality is high, producing postures with an average error of just over 30mm, almost

half the average error of the unconstrained version. On the other hand, while it is not difficult
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(a)

(b)

Figure 3.24.: A low rate body tracking example. The joints in red are the known positions of the
end effectors and those in blue are the estimated joint positions. (a) shows the true body poses and (b)
the estimated poses using FABRIK.

to apply manipulator constraints to CCD, the resulting animation often still has unnatural

movements, especially when the target is at a significant distance from the end effector. The

unconstrained version of CCD produces different joint poses compared to its constrained ver-

sion, even if the latter is not violating the angle restrictions. It is interesting to note that

there are instances where the constrained version of CCD needs fewer iterations and therefore

performs slightly faster than its unconstrained version. This happens because the constraints

prevent the chain from rolling and unrolling itself before reaching the target. Figure 3.26,

shows examples of FABRIK and CCD implementations with and without joint restrictions.

On this example, rotational limits have been applied restricting the allowed bending of each

joint angle to a maximum value. Figure 3.27 shows the reconstruction improvement between

the unconstrained and constrained versions of FABRIK applied to the humanoid model; rota-

tional and orientational constraints have been employed on each joint limiting the angle and

the twist between limbs to a feasible set. Finally, table 3.3 shows the number of iterations and

the time needed to reach the target for both the unconstrained and constrained FABRIK and

CCD approaches.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.25.: Body reconstruction using different IK methodologies. The joints in red are the known
positions of the end effectors and those in blue are the estimated joint positions. (a) shows the initial
position and (b) the true final position. (c) shows the FABRIK solution, (d) the CCD solution, (e) the
J. Transpose solution, (f) the J. DLS solution, (g) the J. SVD-DLS solution.

3.7. Applications

FABRIK has been successfully used for real-time marker prediction and centre of rotation

(CoR) estimation [AL10c]. The joint positions of the estimated markers are re-positioned

assuming that the inter-joint distance is constant over time. Incorporating bone length con-

straints using FABRIK ensures that the model will have a more feasible motion. The proposed

approach predicts the missing markers and estimates the joint positions reliably even if large

sequences with occluded data exist, in which more than 1 marker is occluded on each limb,

even if the limb rapidly changes direction.

FABRIK’s performance has been also tested for hand tracking and reconstruction [AL10b].

FABRIK captures the movements of the hand model in real-time, using the minimum possible

number of markers. Needing only prior knowledge about the geometry of the hand, the hand

model and the restrictions of each joint, it reproduces good estimates of the captured motion.

Joint constraints are applied to ensure that the hand motion is within a feasible set, giving a

visually natural motion of the hand. This method is effective and real-time implementable.
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Table 3.3.: Average results when joint constraints are incorporated.

Number of Matlab exe. Frames per
Iterations time (sec) second

FABRIK 15.461 0.01328 75.301
CCD 26.308 0.12359 8.091
FABRIK Constrained 17.142 0.03110 32.154
CCD Constrained 26.857 0.29281 3.415

3.8. Conclusions

IK methods are used to control the postures of articulated bodies in frame animation produc-

tion. However, most of the currently available methods suffer from high computational cost

and production of unrealistic poses. In this report, FABRIK, a simple, fast and reliable IK

solver is presented. This is the first algorithm to use an iterative method with points and

lines to solve the IK problem. It divides the problem into 2 phases, a forward and backward

reaching approach, and it supports (to the best of our knowledge) all the rotational joint limits

and joint orientations by repositioning and re-orienting the target at each step. It does not

suffer from singularity problems and it is fast and computationally efficient. No pre-recorded

motion database is necessary, thereby avoiding the need for extra memory. Also, a reliable

methodology for applying joint restrictions, which supports and utilises all the advantages of

FABRIK, is presented. FABRIK is a novel methodology for solving the IK problem which

does not suffer from singularity problems and which is fast and computationally efficient. Our

experiments show that FABRIK requires on average fewer iterations to reach the target than

any other IK method tested, both with constrained and unconstrained kinematic chains. At

the same time, it produces visually smooth postures, with and without constraints, reaching

the desired position with very low computational cost. FABRIK can also be extended to a

multiple end effector version supporting multiple kinematic chains.

CCD is also a real-time IK solver. It is much faster than any Jacobian-based method but it

is 10 times slower than FABRIK. The bigger drawback of CCD is the generation of unrealistic

postures since it often rolls and unrolls itself before reaching the target. This rolling tends to

overemphasise the movements of the joints closer to the end effector of the kinematic chain,

thus producing unnatural movements. The CCD algorithm performs better when it is tracking

a moving target (with small step-size) or when the distance between end effector and target

is significantly small. In the case where the initial distance between target and end effector

is large, CCD can produce unrealistic animation. Angle constraints can be easily added to

the CCD methodology, controlling the movement of the manipulator. There are however,

instances where the animation produced still has unnatural movements, even if manipulator

constraints have been applied, especially when the target is at a significant distance from the

end effector. Another limitation of CCD is that handling problems with multiple end effectors

is not straightforward, since it is designed to solve problems with serial chains.

The Jacobian methods return reasonable results; the chain poses, at most times, are more
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(a) (b) (c)

Figure 3.26.: An example of FABRIK and CCD implementations with and without incorporating
constraints. The top line shows the FABRIK solution and the bottom line the CCD solution. (a) the
initial position of the kinematic chain, (b) the unconstrained solution, (c) the constrained solution.

realistic than CCD, especially when the target is positioned at a significant distance from

the end effector. The biggest advantage of the Jacobian methods over all other methods is

that, by default, they can treat problems with multiple end effectors very easily. Manipulator

constraints can be incorporated within the Jacobian algorithm, but the way in which these

restrictions are applied is not straightforward. The Jacobian-based methods also perform

poorly when the target is moving in a sinusoidal trajectory and the end-effector must track its

position. They can produce unrealistic movements and motion with oscillation, shaking and

discontinuities. There are also instances where the Jacobian methods suffer from singularity

problems, since matrix inversions need to be calculated. Their biggest drawback however is

that they converge very slowly to their final solutions since they use a linear approximation

with a small step; only under some circumstances, eg using fast C++ matrix libraries, can

these kinds of methods reach the target of real-time application.

Triangulation returns the poorest results from the methods used within this report. The

kinematic chain does not have a realistic shape; the joints close to the end-effector are usually

in a straight line, emphasising the rotation of the joints neighbouring the root. Use of the

Triangulation algorithm is limited to problems with a single end effector, making it unsuitable

for complex character models with multiple end effectors. By definition, the Triangulation

algorithm does not support manipulator restrictions. In this report, angle constraints have

been incorporated confirming that the Triangulation algorithm often suffers from an inability

to find a feasible solution, even if there is a solution, since each joint position is calculated

independently without considering the restrictions of the next joint.

The FABRIK algorithm is a powerful tool that can be used to provide reliable solutions to the

IK problem both in robotics and computer vision. Chapters 4 and 5 demonstrate examples of
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(a) (b) (c) (d)

Figure 3.27.: An example of implementation. (a) The initial position, (b) the real posture, (c) the
solution using unconstrained FABRIK, (d) the solution after incorporating joint restrictions.

implementing FABRIK in motion capture problems for real-time marker prediction and centre

of rotation estimation as well as hand tracking and reconstruction.



4
Motion Capture Solutions under

Marker Occlusions

T his chapter addresses the problem of real-time joint localisation of legged skeletons in the

presence of missing data. The data is assumed to be labelled 3D marker positions from

a motion capture system. An integrated framework is presented which predicts the occluded

marker positions using a variable turn model within an Unscented Kalman filter. Inferred

information from neighbouring markers is used as observation states; these constraints are

efficient, simple and real-time implementable. This work also takes advantage of the common

case that missing markers are often still visible to a single camera, resulting in more accurate

predictions. An Inverse Kinematics technique is then applied ensuring that the bone lengths

remain constant over time; the system can thereby maintain a continuous data-flow. The

marker and Centre of Rotation (CoR) positions can be calculated with high accuracy even

in cases where markers are occluded for a long period of time. Our methodology is tested

against some of the most popular methods for marker prediction and the results confirm that

our approach outperforms these methods in estimating both marker and CoR positions.

4.1. Introduction

Optical motion capture is a technology used to turn the observations of a moving subject

(taken from a number of cameras) into 3D position and orientation information about that

79
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subject. It is commonly used to better analyse techniques for sports training [HNT+06]; to

observe asymmetries and abnormalities in rehabilitation medicine (clinical analysis) [HDSB05,

PTP+05, BSR07]; for biomechanics (prosthetics, ergonomics); to study the person’s movements

for medical reasons or sport performance [Gol]; for gait labs; or for visualisation of virtual

characters for films and computer games [Men99]. In general, the problem of automatic skeleton

generation can be separated into three stages. First is the marker clustering, then the problem

of finding the joint location and finally, the identification of the full body. In order to achieve

accurate skeletal reconstruction of any legged body using optical motion capture systems,

3 markers must be available on each limb segment at all times. However, even with many

cameras, there are instances where occlusion of markers by elements of the scene leads to

missing data. In order to unambiguously establish its position, each marker must be visible to

at least two cameras in each frame. Although many methods have been developed to handle

the missing marker problem, most of them are not applicable in real-time, are usually limited

to short time period occlusions and often require manual intervention.

This chapter investigates methodologies for real-time marker prediction, under multiple cases

of occlusion, to drive CoR estimates and then to automatically establish the skeleton model.

A real-time integrated framework is presented, which predicts the occluded marker positions

using a variable turn model within an Unscented Kalman filter. The previous marker positions

are used within the framework in addition to information related to the missing markers of the

current frame, inferred from an approximate rigid body assumption. The predicted marker

positions are then used to locate the joints. Without assuming any skeleton model, we take

advantage of the fact that for markers on a given limb segment, the inter-marker distance

is approximately constant. The proposed marker constraint methodology is simple, real-time

implementable and very efficient. Our method is automatic and scalable, without requiring

any parameters to be set by the user. It considers all the cases of marker occlusion within

a limb resulting in accurate predictions even in cases where all markers on a limb segment

are missing for an extended period of time. The proposed approach also takes advantage of

the special, but common, case where missing markers are still visible to one camera. With a

continuous stream of accurate labelled 3D data, we can perform real-time CoR estimation; the

CoR position is thereafter corrected via a real-time Inverse Kinematic technique which ensures

that the inter-joint pairwise distances remain constant over time. A skeletal reconstruction is

thereby achieved, producing information which can be used for visual performance feedback.

Experiments demonstrate that our methodology effectively recovers good estimates of the true

positions of the missing markers and CoRs, agreeing with human intuition, even if all the

markers on a limb are occluded for a long period of time. The movements produced are

smooth, without abnormalities or oscillations, resulting in natural motion.

4.2. Obtaining 3D Marker Positions

Motion capture hardware, such as that provided by PhaseSpace [Pha], CodaMotion [Cod]

and Vicon [Vic], is under constant development, providing real-time acquisition of labelled
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Figure 4.1.: Marker-to-limb association example with three markers on each limb. This example
shows the upper body with the marker-to-limb association.

3D marker data. These data can be used for reconstruction of the human skeleton allowing

accurate real-time feedback via tracking and modelling of human motion.

In order to overcome the tracking problem, we used a 16 camera and 480 frames per second

motion capture system using modulated LEDs, provided by PhaseSpace [Pha]. These cameras

contain a pair of linear scanner arrays operating at high frequency each of which can capture

the position of any number of bright spots of light as generated by the LEDs. The markers

consist of a control circuit and bright red LEDs which are wired to a synchronisation box.

For reconstruction it is necessary for each marker to be visible by at least two cameras in each

frame. The system offers a fast rate of capture (480Hz) and allows the individual markers to be

identified by combining the information from several frames and hence identifying the marker

from its unique modulation. The markers are placed at strategic points on the articulated

body so that these points can be easily and accurately located by the cameras. It is desirable

to allocate the markers such that there is the same number of markers on each limb, if possible,

in order to obtain the same quality of data for all parts of the body we are interested in. The

subject moves in a specified space that can be tracked by the cameras and the markers attached

to its body are tracked over time and used to reconstruct the three-dimensional pose of the

subject at each instant of time.

4.2.1. Marker-to-limb association

Since the three-dimensional trajectory of each marker is available we are able to determine

which markers are attached to which limb on the body. This is done in two steps:

1. Firstly, markers attached to the same limb are grouped. This is done by finding which

markers maintain the same distance from each other throughout the motion. Since the

data is noisy we expect that the distance between the markers does not remain constant.

Therefore, the variances of the distances between markers are calculated and the markers

are clustered as belonging to the same limb if the variance of the distance between them

is less than a certain threshold. [JMF99] gives a survey on clustering techniques.
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Figure 4.2.: Description of the rigid body. The vector r(t) specifies the position of the centre of
mass, relative to the origin. The rotor R(t) defines the orientation of the body, relative to a fixed copy
placed at the origin. The xk is a vector in a reference body (in this example in frame k), and xk+m is
a vector in space of the equivalent point of the moving body (in this example after m frames).

2. Afterwards, association of the groups of markers to specific limbs of the body is necessary.

This is done either manually or automatically by first calculating the distance between

the centroid of each group of markers in a given time frame and then, according to the

model used, the limbs are identified. It is assumed that the skeleton consists of rigid

limbs connected with ball joints.

An example of associated markers in an upper body model is presented in figure 4.1.

4.2.2. Rigid body dynamics

A rigid body can be viewed as a system of particles moving subject to the constraint that

all inter-particle distances are fixed. The final body position can be expressed in terms of a

rotation and translation from a fixed “reference” body on to the body in space (figure 4.2).

We let r(t) denotes the position of the centre of mass and xk+m denote the position in space

of a point in the body. These are related by:

xk+m = RxkR̃+ r(t) (4.1)

where xk is a fixed constant vector in the reference copy of the body. In this manner we have

placed all of the rotational motion in the time-dependent rotor R(t); rotors will be regularly

used later on this chapter.

4.3. Related Work

Several papers have focused on methods for localisation of the centre of rotation (CoR) using

MoCap data. These methods can be separated into two major groups, the sphere fitting

methods and the transformational methods. Both families of methods assume that at least 3

markers are available on each limb segment; there are, although, instances where marker data

are unavailable due to marker occlusions.
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Sphere fitting: Sphere fitting methods are the most commonly used methods for calculating

the CoR. This group of methods assumes that all markers remain a constant distance from the

centre of rotation. A first step for solving this problem is to find a rigid body transformation

moving the problem into a reference frame (e.g. frame 1) so that the limb segment on one

side of the joint is viewed as stationary and then solve a simpler one-sided problem. Dorst,

in [Dor05], presents a first order approximation which also illustrates the dependence of the

attitude estimation error on the distribution of the point cloud (in this case the marker locations

on the limb segments).

In [SPB+98] the Levenberg-Marquardt method was implemented in order to optimise the

location of the centre of rotation and the radii of the marker spheres. A cost function S =

(|xkm − C| − rm)2 was introduced, where xkm is the marker position of the marker m at frame

k, C is the centre of the sphere and rm is the radius of the sphere associated with the marker

m. The overall cost is the sum of the individual costs over all markers and all frames. This

algorithm requires a series of weights to be set, such as perceived accuracies of markers and a

spatial reweighting of data points via a voxel grid. This method also has disadvantages; the

inaccuracy of the heuristics used to set the weight parameters and the non-linear nature of the

solver, making it susceptible to problems with local minima.

Halvorsen et al., [HLL99], describe a closed form solution using the geometric properties of

the sphere. They used the fact that the perpendicular bisectors of chords of a sphere intersect

at the sphere origin, and every pair of frames provide an approximate perpendicular bisector

for each marker. However, this method is dependent on which data points are used to form

the chords, affecting the accuracy and effectiveness of the algorithm.

In [GL02], Gamage and Lasenby also introduced a closed form solution, using a cost function

of the squared differences in the squared distance from the CoR C, to a marker m, at position

xkm in frame k, and the radius of the sphere associated with the marker rm. That is(
(C − xkm)2 − (rm)2

)2
(4.2)

An alternative approach provided by Halvorsen, [Hal03], gives a Bayesian analysis of the

algorithm of [GL02], providing a first order approximation of the effect of isotropic Gaussian

noise upon the algorithm. An extension to [Hal03] can be achieved by assuming that the

measured points are the result of Gaussian noise only in the axial direction1.

Transformational: The transformational method assumes that all positions of the mark-

ers are rigidly attached to limb segments. Such an approach was implemented in [Hol91]. A

technique for using magnetic motion capture data to determine the joint parameters of an

articulated hierarchy was described in [OBBH00]. This technique makes it possible to deter-

mine limb lengths, joint locations, and sensor placement for a human subject without external

measurements, just from the motion data acquired during the capture session. The parameters

are computed by performing a linear least squares fit of a rotary joint model to the input data.

1The axial direction is that parallel to a line from the centre of the sphere to the true marker location.
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In many recent papers, such as [ETDH06], the same techniques are applied but the orientation

is obtained from sets of optical markers. In [CL05] a sequential algorithm was presented to

locate the rotation centres of a human skeleton from marker data assuming that all markers on

a body segment are attached to a rigid body. This method does not suffer from optimisation

steps with computational requirements that grow with the amount of data supplied ([GL02],

[KOF05]) and no user feedback to set marker weights, as in [SPB+98], are needed. The method

is closed form, thus enabling real-time implementation.

Whilst several methods to estimate the location of centre of rotation have been proposed,

the performance of most is unsatisfactory in the presence of unusual motions or of many

contiguous occlusion-affected frames. Indeed, there are instances, even with expensive mo-

tion capture systems, where occlusion of markers by elements of the scene leads to missing

data. Many of these methods behave suboptimally with diverse motions, a high percentage

of missing markers and/or external occlusions. Several methods have been proposed to deal

with the problem of occluded markers in order to drive CoR estimation and skeletal recon-

struction, but these do not generally run in real-time and often require manual intervention.

Interpolation of the missing data using linear or non-linear approaches is commonly used

[WH97, RCB98, Neb99a, AW00, Neb99b]; this can produce accurate results, but it is a post-

processing technique requiring data prior to and after the occlusion. Some motion capture

(MoCap) systems also provide missing markers recovery solutions using interpolation tech-

niques in combination with kinematic information, but they do not reliably work in real-time.

Recently, [PLH+09] presented an extrapolation algorithm which assumes that the most com-

mon motion behaviors are circular or linear movements; however, this method can produce

reliable predictions only for a limited number of occluded frames. While the discarding of

frames with missing markers is another common technique, the omission of specific data could

lead to the loss of useful information. Long-running occlusions leading to a large sequence of

missing data can also cause complete failure of the system.

Rhijn and Mulder, [RM06], proposed a model-based optical tracking and model estimation

system for composite interaction devices. The proposed system automatically constructs the

geometric skeleton structure, degrees of freedom (DoF) relations, and DoF constraints between

segments, and thus pre-defined models are not required. The system supports segments with

only a single marker, so that interaction devices can be small with a low number of markers.

However, it is an off-line procedure unsuitable for real-time applications. Dorfmüller in [DU03]

used an extended Kalman filter (EKF) to predict the missing markers using previously available

marker information, while Welch et al. in [WBV+99] used an EKF to resolve occlusions based

on the skeletal model of the tracked person. Tak and Ko, [TK05], employed an Unscented

Kalman Filter to ensure motion capture data remains in a feasible set. Again, these methods

require manual intervention or become ineffective in cases where markers are missing for an

extended period of time. In our earlier work, [ACL08], we presented an EKF method using a

constant velocity (CV) model with marker constraints from neighbouring2 markers. However,

the CV model (2nd order Kalman Filter (KF)) limits its use to problems with constant marker

2Neighbours are the markers belonging to the same limb segment.
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velocity. These methods also do not take into consideration the fact that bones are rigid,

thus the inter-joint pairwise distances remain constant over time. Li et al [LMPF09] propose

DynaMMo, an approach that uses a Linear Dynamical System (LDS) to model motion capture

data under sequences with missing values; in [LMPF10], the same authors introduce BoLeRo,

a similar technique which also takes into consideration bone length constraints. The suggested

algorithm has a ‘hard’ and ‘soft’ version of bone constraints assuming rigidity limitations of

the distance between markers on a given segment limb. Although their algorithm results in

smooth motion, the method is complex and expensive in terms of computational cost.

Herda et al., in [HFP+00] and [HFP+01], used a post-processing approach to increase the

robustness of a motion capture system by using a sophisticated human model. They can

predict the 3D location and visibility of the markers increasing the robustness of the marker

tracking and reducing the need for human intervention during the reconstruction process. The

neighbouring markers that share kinematic relations with the occluded markers were used

to help the estimation of the isolated markers. However, the skeleton information must be

known a priori in order to apply this method. [HSD05] also takes advantage of the fact that

the markers on a limb have fixed inter-marker pairwise distances. Thus, in the case where a

marker is missing, its position can be recovered through the distance constraints imposed by

the markers of the same limb. This approach may become ineffective when all or a significant

number of markers are missing so that no information on that limb can be inferred from

the available neighbouring markers. Ringer and Lasenby, [RL02], also present an automatic

method to identify indistinguishable markers based on cliques3. However, this requires an off-

line procedure in order to determine marker cliques and parameters of the skeletal structure.

Zordan and Van Der Horst in [ZVDH03] mapped 3D marker position data to joint trajectories

for a fixed limb-length skeleton, by attaching virtual springs and controllers, to follow the

Cartesian-based marker data. In general, these skeleton methods could work well for short

time occlusions but fail to track the missing markers for large occluded sequences.

In [GMHP04], a style-based inverse kinematic method has been developed where a Gaussian

Process Latent Variable Model (GPLVM) was used along with a pre-specified kinematic model.

Wang et al, [WFH08], presented a Gaussian process dynamical model (GPDM) in order to learn

the human pose and motion models. They observed the motion using a chain of latent variables

and nonlinear mapping from the latent space; the proposed learned model was also able to

cope with marker occlusions. Although these are real-time processing methods, they require

knowledge of skeleton information which severely restricts their use. Chai and Hodgins, [CH05],

present a method that uses the neighbouring markers to estimate the missing marker in the

current frame. They propose a local linear model from these neighbours and then reconstruct

the full pose of the frame by conducting an optimisation in the space constrained by a pre-

recorded database. Yu et al., [YLD07], proposed an online motion capture labelling approach

which also recovers missing markers. They cluster the markers into a number of rigid bodies

based on the standard deviations of the marker-pair distances and if their fitting-rigid-bodies

algorithm did not classify all the markers into rigid bodies, a missing marker auto-recovery

3Markers in a clique have constant distances between each other.
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method is applied assuming that the inter-marker distances are fixed over time. However, a

training session is needed, the auto-recovery method for marker estimation does not take into

account the limb segment rotation, no information about markers visible to a single camera is

considered and the CoR estimation is not investigated under marker occlusions.

Park and Hodgins, [PH06], fill the missing data by learning a statistical model of the spa-

tial relationship between each marker and its neighbours; they use a Principal Component

Analysis (PCA) on each marker position and its neighbours throughout the entire motion.

In [THR07], the authors modelled the human motion and filled the gaps in the data using a

Conditional Restricted Boltzmann Machine (CRMB) with discrete hidden states. Their ap-

proach was trained using non-linear binary representations, conditioned on previous frames; at

the same time, they took into consideration the correlation between joint angles, to produce

more accurate results. Liu et al., [LZWM06, LM06], presented a piecewise linear approach for

estimating human motions from a pre-selected set of informative markers (principal markers).

A pre-trained classifier identifies an appropriate local linear model for each frame. Missing

markers are then recovered using available marker positions and the principal components of

the associated model. In [HGP04], the data were mapped onto a target motion by searching

over patterns in existing databases. However, this data-driven family of methods requires an

off-line training procedure and the results are highly dependent on training data and limited

to those models and movements the system has been trained on. So far, no existing method

operates inter-joint constraints to maintain a constant bone length over time. Also, no method-

ology currently exploits the useful information we can extract from the special, but frequent,

cases where markers are visible to only a single camera.

4.4. Calculating the Centre of Rotation

Locating the CoRs is important in both computer graphics and rehabilitation medicine. During

capture, markers must be carefully placed on the body in order to obtain good results. Results

using markers placed too close to the CoR are more susceptible to errors since a small error may

cause large deviations in the estimated rotation, leading to erroneous calculation of the model

parameters. The data discussed here are labelled from an active marker system (PhaseSpace

[Pha]) where no tracking is necessary. In general, 3 markers per bone segment are required to

estimate the CoR for joints with 3 DoF; for simpler problems having fewer DoF, such as knees

and elbows, the CoR can be calculated with fewer markers [CP07].In this report, we consider

the general case of joints with 3 DoF since no prior knowledge of the model or joint-type is

assumed to be known.

4.4.1. Finding the rotor between 2 sets of vectors

The CoR estimation is a crucial step in acquiring a skeleton from raw motion capture data.

To calculate the joints between two sets of markers, it is helpful to have the rotation of a limb

at any given time. We can estimate the orientation of a limb at time k relative to a reference

frame using the Procrustes formulation, as described by Horn in [Hor87].
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Assume a set of n-labelled points xi and the same set of points after an unknown rotation

R(t), wi; the problem of finding a least square solution of the unknown rotor (unit quaternion)

R can be formulated as,

R = argmax

n∑
i=1

(
RxiR̃

)
· wi (4.3)

In order to avoid introducing quaternion terminology and methods, we can express the solution

in terms of Geometric Algebra. To clarify the following equations, the marker index i will

temporally be suppressed. Let:

R = a+B1e23 +B2e13 +B3e12 (4.4)

xi = x1e1 + x2e2 + x3e3 wi = w1e1 + w2e2 + w3e3 (4.5)

where a is a scalar, e1, e2, e3 are orthogonal vectors in the 3-D space, and e23, e31 and e12 are

the unit bivectors, as described in chapter 2. Each of these encodes a distinct plane, and there

are 3 of them to match the 3 independent orthogonal planes in the 3-D space. Then:

(RxiR̃) · wi = a2(x · w) + 2aB1(x3w2 − x2w3) + 2aB2(x3w1 − x1w3)

+ 2aB3(2x2w1 − 2x1w2) +B2
1(x1w1 − x2w2 − x3w3)

+ 2B1B2(−x2w1 − x1w2) + 2B1B3(x3w1 + x1w3)

+B2
2(−x1w1 + x2w2 − x3w3) + 2B2B3(−x3w2 + x2w3)

+B2
3(−x1w1 − x2w2 + x3w3)

Eq. 4.3 can now be expressed as follows:

R = argmax
n∑

i=1

(
RT

υNRυ

)
(4.6)

where:

Rυ =


a

B1

B2

B3



N =


x1w1 + x2w2 + x3w3 x3w2 − x2w3 x3w1 − x1w3 x2w1 − x1w2

x3w2 − x2w3 x1w1 − x2w2 − x3w3 −(x2w1 + x1w2) x3w1 + x1w3

x3w1 − x1w3 −(x2w1 + x1w2) −x1w1 + x2w2 − x3w3 x3w2 − x2w3

x2w1 − x1w2 x3w1 + x1w3 x3w2 + x2w3 −x1w1 − x2w2 + x3w3
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Figure 4.3.: The motion of two limbs with a time-difference of m frames.

In terms of limb motion, it is noted that x1, x2, x3 and w1, w2, w3 correspond to values given

below, with xki , y
k
i , c

k
x and cky be the centre of mass of the 3 markers, as shown in figure 4.3.

x1 = xk1 − ckx w1 = xk+m
1 − ck+m

x

x2 = xk2 − ckx w2 = xk+m
2 − ck+m

x (4.7)

x3 = xk3 − ckx w3 = xk+m
3 − ck+m

x

ckx =
xk1 + xk2 + xk3

3
ck+m
x =

xk+m
1 + xk+m

2 + xk+m
3

3
(4.8)

As a valid rotor must always obey the property RR̃ = 1 it must be the case that RT
υRυ = 1.

If this condition is relaxed and normalisation is introduced into the above matrix expression

we have:

R = argmax

(
RT

υ

∑n
i=1 (N)Rυ

RT
υRυ

)
(4.9)

This expression is now in the form of the Rayleight Quotient;
∑n

i=1 (N) is clearly Hermitian

and the value of R at the maximum value of the expression to be maximised. Thus, provides a

least squares estimate of the required rotor, where the eigenvector associated with the greatest

eigenvalue maximises the matrix product. Therefore the rotor Rυ which corresponds to the

rotation is equal to that eigenvector.

Hereafter, in this thesis, vectors will be symbolised in bold font to distinguish them from

other symbols and avoid any confusion.

4.4.2. Joint localisation

After extracting the rotation of two limbs between the current and a reference frame, the

location of the joints can be calculated using the approach in [CL05]. This takes advantage
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Figure 4.4.: A typical marker placement with relevant markers shown.

of the approximation that all markers on a segment are attached to a rigid body. Suppose

the markers are placed on two segments (x and y) joined by a CoR. Let the CoR location in

frame k be Ck. The vectors from the CoR to markers in the reference frame are denoted by

aix and ajy for limbs x and y respectively, where i and j are marker labels. Figure 4.4 presents

a typical marker placement with the bk
ij , a

i
x and ajy as shown. The positions of the markers in

frame k are given by:

xk
i = Ck +Rk

xa
i
xR̃

k
x yk

j = Ck +Rk
ya

j
yR̃

k
y (4.10)

where Rx and Ry are the rotors expressing the rotation of the joint limbs x and y respectively.

R̃ is the reverse of R. Let bk
ij be the vector from xk

i to yk
j , that is:

bk
ij = xk

i − yk
j = Rk

xa
i
xR̃

k
x −Rk

ya
j
yR̃

k
y (4.11)

A cost function S can be constructed that has a global minimum at the correct values of aix

and ajy if the data is noise free, and returns a good estimate in the presence of moderate noise.

S =

m∑
k=1

nx∑
i=1

ny∑
j=1

[
bk
ij −

(
Rk

xa
i
xR̃

k
x −Rk

ya
j
yR̃

k
y

)]2
(4.12)

where nx, ny are the number of markers on limbs x and y respectively, and m is the number

of frames used for the calculations. The minimum is given by the solution of the simultaneous

linear equations, obtainable by differentiation [CL05]:

aix =
1

m

m∑
k=1

R̃k
xb̄

kRk
x +

1

m

m∑
k=1

R̃k
xR

k
y āyR̃

k
yR

k
x (4.13)

ajy =
1

m

m∑
k=1

R̃k
yb̄

kRk
y +

1

m

m∑
k=1

R̃k
yR

k
xāxR̃

k
xR

k
y (4.14)
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(a) (b)

Figure 4.5.: An example of CoR estimation of a human body model using [CL05]. (a) The marker
positions as returned by the motion capture system, (b) the calculated CoRs and the skeletal recon-
struction.

where

b̄k =
1

nxny

nx∑
i=1

ny∑
j=1

bk
ij āw =

1

nw

nw∑
i=1

aiw w = {x, y}

Having calculated the Rk
w and āw, we can locate the CoR. Figure 4.5 demonstrates an

example of CoR estimation and skeletal reconstruction in real-time using the above method.

However, due to occlusions, there are instances where not all marker positions are available.

If all markers are available on one limb segment, w, the CoR may be estimated using only

the current Rk
w and āw as estimated in the previous frame, when all markers were visible, via

(4.10). If there are markers occluded on both limb segments, a marker prediction methodology

is needed.

4.5. Marker Prediction

The marker position estimates can by predicted using filtering, with each single marker tracked

individually and incorporating constraints from the neighbouring markers. Most tracking

problems require a dynamic model for accurate estimation of the trajectory of a maneuverable

object. The key for an efficient target tracking algorithm is being able to extract information

about the target’s state from the observations. Hence, a model that takes account of velocity

and acceleration changes of the target state over time is needed.

During the last decades various mathematical models of target motions have been developed.

Singer ([Sin70, SB71]) proposes a model which assumes that the target acceleration is a zero-

mean first-order stationary Markov process. Based on Singer’s assumption, many papers have

proposed a constant or variable acceleration (e.g [LJ03]).

The general state-space model can be generally divided into two models, the state transition
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and the state measurement model

p(xt|xt−1) p(yt|xt) (4.15)

where xt ∈ Rnx denotes the state of the system at time t and yt ∈ Rny the observations. The

states follow a first order Markov process and the observations are assumed to be independent

given the states. Therefore, the dynamic model can be expressed as follows

xt = f(xt−1,vt−1) yt = h(ut,xt,nt) (4.16)

where, yt ∈ Rny is the output observation, ut ∈ Rnu is the input observation, xt ∈ Rnx is the

state of the system, vt ∈ Rnv is the process noise and nt ∈ Rnn the measurement noise. The

mapping f : Rnx × Rnv 7→ Rnx and h : Rnx × Rnn 7→ Rny represent the deterministic process

and measurement models.

A simple and popular model used to track the motion of a target is the nearly constant turn

(NCT) model [LJ03], which assumes that the target moves with nearly constant speed and

turn rate. The altitude changes are most often modeled independently by a nearly constant

velocity (CV) model or a random walk model along the z direction, leading to an acceptable

accuracy in practice.

4.5.1. Variable Turn Model

The NCT and CV models were based on a constant-speed condition and constant turn-rate

assumption which restricts the variety of possible supported maneuvers. The Variable Turn

Model (VTM), [LJ03], is a more sophisticated model which assumes that a target’s velocity and

acceleration are not constant over time. Figure 4.6 compares target prediction with variable

acceleration using the VTM model against a linear prediction.

It is easily seen that a constant speed (i.e ν̇ = 0) motion corresponds to a · v = 0, where a

and v are the target acceleration and velocity vectors. This relationship is described by

a = Ω× v (4.17)

where Ω is the angular velocity vector of the target and is equal4 to

Ω =
v × a

ν2
(4.18)

where Ω · v = 0 and ν = ∥v∥ is the target speed.

Asseo and Ardila in [AA82] describe a general motion of a rigid body in space. They show

that, under the orthogonal velocity condition Ω ⊥ v, the target acceleration can be expressed

as a second-order Markov process with state dependence

ȧ = −2αa− (2α2 + ω2)v +w w = v̈B + Ω̇× v (4.19)

4v× a = v× v̇ = v× (Ω× v) = (v · v)Ω− (Ω · v)v = ν2Ω− (Ω · v)v, if and only if Ω · v = 0, that is Ω ⊥ v.
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â

Figure 4.6.: Target prediction with variable acceleration using the VTM model compared to the
linear prediction.

where if v = νiei, then vB = ν̇iei (sum over i assumed) and

ω , ∥Ω∥ =
∥v × a∥

ν2
α = −v · a

ν2
(4.20)

Thus, the target equations of a 3D discrete motion of the VTM with state xk =

[xk, ẋk, ẍk, yk, ẏk, ÿk, zk, żk, z̈k]
T are now represented by

xk = diag [Fx(ωc,x, αx), Fy(ωc,y, αy), Fz(ωc,z, αz)]xk−1 +Buk−1 +wk−1

where Fi(ωc,i, αi) for each component i = x, y, z is given by:

f i
11 = 1; f i

21 = f i
31 = 0

f i
12 =

A−B

ωc,i(α2
i + ω2

c,i)

where A = 2αiωc,i and

B = e−αiT (2αiωc,i cos(ωc,iT ) + (α2
i − ω2

c,i) sin(ωc,iT ))

f i
13 =

ωc,i − e−αiT (ωc,i cos(ωc,iT ) + αi sin(ωc,iT ))

ωc,i(α2
i + ω2

c,i)

f i
22 =

e−αiT (ωc,i cos(ωc,iT ) + αi sin(ωc,iT ))

ωc,i

f i
23 =

e−αiT sin(ωc,iT )

ωc,i

f i
32 = −

(α2
i + ω2

c,i)e
−αiT sin(ωc,iT )

ωc,i

f i
33 =

e−αiT (ωc,i cos(ωc,iT ) + αi sin(ωc,iT ))

ωc,i
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and

Q = cov (wk−1)

= diag [SxQx(ωc,x, αx), SyQy(ωc,y, αy), SzQz(ωc,z, αz)]

where ω2
c,i = α2

i + ω2
i , Sx, Sy and Sz are the power spectral densities of the white noise w of

each component x, y, z. Qi(ωc,i, αi) for i = x, y, z is given by:

qi11 =
A+B + C

4αiω2
c,i(α

2
i + ω2

c,i)
3

A = e−2αiT [(α2
i − 3ω2

c,i)c+ (ω2
c,i − 3α2

i )s− (α2
i + ω2

c,i)
2]

B = 8e−αiTαiωc,i[2αiωc,ic0 + (α2
i − ω2

c,i)s0]

C = α2
iω

2
c,i(4αiT − 11) + ω4

c,i(1 + 4αiT )

qi12 =
e−2αiT (ωc,ic0 + αis0 − e−αiTωc,i)

2

2ω2
c,i(α

2
i + ω2

c,i)
2

qi13 =
e−2αiT (c− s− αi + ω2

c,i) + 4e−αiTαiωc,is0 − ω2
c,i

4αiω2
c,i(α

2
i + ω2

c,i)
2

qi22 =
e−2αiT (c− s− αi − ω2

c,i) + ω2
c,i

4αiω2
c,i(α

2
i + ω2

c,i)
2

qi23 =
e−2αiT s20
2ω2

c,i

qi33 =
e−2αiT (c+ s− αi − ω2

c,i) + ω2
c,i

4αiω2
c,i

qi21 = qi31 = qi32 = 0

c = α2
i cos(2ωc,iT ), s = αiωc,i sin(2ωc,iT )

c0 = cos(ωc,iT ), s0 = sin(ωc,iT )

4.5.2. Unscented Kalman Filter

Kalman filtering has been extensively used for real-time estimation of linear dynamic systems.

However, the traditional Kalman filter [Kal60] is not suitable for use with non-linear dynamical

systems, even if Gaussian approximations to the joint distribution of state x and measurement

y are made. The Extended Kalman Filter (EKF) [Jaz70] is a minimum mean-square-error

(MMSE) estimator which extends the scope of the Kalman filter to nonlinear optimal filtering

problems. It forms a Gaussian approximation to the joint distribution of state and mea-
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surement using a Taylor series-based transformation. Nevertheless, EKF implementation is

complex (Jacobian and Hessian matrices with second order filters are required), difficult to

tune, and only reliable for systems that are almost linear on the timescale of the updates.

The Unscented Kalman Filter (UKF), [JU97], propagates mean and covariance information

through nonlinear transformations providing more accurate results than the EKF, for a similar

computational cost. Consider propagating an nx-dimensional random variable x and assume

x has mean x̄ and covariance Px. First, a set of 2nx + 1 weighted samples or sigma points

Si = {Wi,Xi} are deterministically chosen so that the true mean and covariance of the random

variable x can be completely recovered from them. A set of scaled sigma points S = {W,X}
can be calculated by setting:

λ = α2(nx + κ)− nx (4.21)

and selecting the sigma point set by:

W
(m)
0 = λ/ (nx + λ) i = 0

W
(c)
0 = λ/ (nx + λ) + (1− α2 + β) i = 0

W
(m)
i = W

(c)
i = 1/ {2 (nx + λ)} i = 1, ..., 2nx

where α is a positive scaling parameter which controls the size of the sigma point distribution.

κ ≥ 0 is also a scaling parameter and Wi is the weight associated with the ith point such

that
∑2nx

i=0 Wi = 1. [MDFW00] proposed κ = 0, to guarantee positive semidefiniteness of the

covariance matrix and 0 ≤ α ≤ 1 to avoid sampling non-local effects when the nonlinearities are

strong. β ≥ 0 is a weighting term which incorporates knowledge of the higher order moments

of the distribution. β = 2 is the optimal choice for a Gaussian prior.

Let the original state and noise variables at time k be xα
k = [xT

k ,v
T
k ,n

T
k ]. The sigma point

selection scheme is applied to this augmented state Random Variable (RV) to calculate the

corresponding sigma matrix, Xα
k . The mean x̄ and covariance P of the Gaussian approximation

is updated to the posterior distribution of the states as follows:

x̄0 = E[x0]

P0 = E[(x0 − x̄0) (x0 − x̄0)
T ] (4.22)

x̄α
0 = E[xα] = [xT

0 0 0]T

Pα
0 = E[(xα

0 − x̄α
0 ) (x

α
0 − x̄α

0 )
T ] =

P0 0 0

1 Q 0

1 0 R


For k ∈ {1, ...,∞} the sigma points are equal to:

X a
k−1 =

[
x̄α
k−1 x̄α

k−1 ±
√

(nα + λ)Pα
k−1

]
(4.23)
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and the time update is given by:

X x
k|k−1 = f

(
X x
k−1,X ν

k−1

)
x̄k|k−1 =

2na∑
i=0

W
(m)
i X x

i,k|k−1

Pk|k−1 =

2na∑
i=0

W
(c)
i [X x

i,k|k−1 − x̄k|k−1][X x
i,k|k−1 − x̄k|k−1]

T

Zk|k−1 = h
(
X x
k|k−1,X

n
k−1

)
z̄k|k−1 =

2na∑
i=0

W
(m)
i Zx

i,k|k−1

where f(.) is the transition and h(.) the observation function. The measurement update equa-

tions are:

Pz̃k z̃k =

2na∑
i=0

W
(c)
i [Zi,k|k−1 − z̄k|k−1][Zi,k|k−1 − z̄k|k−1]

T

Pxkzk =

2na∑
i=0

W
(c)
i [Xi,k|k−1 − x̄k|k−1][Zi,k|k−1 − z̄k|k−1]

T

Kk = PxkykP
−1
ỹk ỹk

x̄k = x̄k|k−1 +Kk(Zk − z̄k|k−1)

Pk = Pk|k−1 −KkPz̃k z̃kK
T
k

where, xα = [xT vT nT ]T , Xα = [(X x)T (X ν)T (X n)T ]T , λ is the composite scaling parameter,

nα = nx+nν+nn, Q is the process and R the measurement noise covariance, K is the Kalman

gain, Wi are the Unscented Transform weights and Zk is the observation vector.

The transition function f(.) and the observation function h(.) are very important for im-

plementing efficient UKF filtering. In this model the transition function is taken to be a

variable turn model (VTM) with target velocity and acceleration the velocity and acceleration

of the relevant marker. However, a detailed look at real marker data indicates that estimated

velocities are significantly noisy. Many factors contribute to marker position noise, such as

optical measurement noise, miscalibration of the optical systems, reflections, motion of mark-

ers relative to the skin and motion of the skin relative to the rigid body (underlying bone).

As a result, the target acceleration is mostly noisy. One method of measuring accelerations

would be to attach accelerometers to the markers placed on the limb segments. Such a system,

which synchronises measurements from the accelerometer and active markers was trialled and

described in [Bac09]. While the system shows some promise, we are faced with dealing with

both the noise on the accelerometer readings and the fact that the reference frame of those

readings must be determined. Given these difficulties, we propose to use estimates of accelera-

tions obtained from the position data. A real-time median filter has been applied to the target
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velocity (more details in [ALC09]). Having a smoothed velocity, an adequate acceleration can

be calculated and the proposed model can then be used straightforwardly.

On the other hand, for the observation function we use a simple model which assumes

that the rotation between two consecutive frames is constant. Thus, the time update of the

observation state is equal to

Zk|k−1 = Rk−2,k−1X x
k|k−1R̃

k−2,k−1 (4.24)

where Rp,q is the rotor for the rotation between frames p and q, assuming that the rotation of

the markers between two consecutive frames remains constant. It is important at this point

to recall that the rotation between the previous and the current frame is re-calculated every

frame just after the marker prediction using the estimated marker positions.

Early numerical implementations using Particle Filtering [DDFG01] showed that, although

it could improve the performance of our state estimates, this improvement was marginal com-

pared to the UKF-VTM and therefore not worth the added computational effort. Particle

filtering has high computational cost thus ruling out its use for real-time applications.

4.6. Applying Marker Constraints

The observation vector, Zj
k, gives the true (observed by the mocap system) position of the

tracked marker j when available, otherwise it represents estimated position. The state vector

represents true position and velocity as given above. To cope with cases where markers are

missing for long periods of time, a tracker that uses information from both the previous frames

and the current positions of neighbouring visible markers has been implemented, taking into

account the rigidity of the body. Assuming that there are three markers on each limb and

the inter-marker distance is constant over time, the observation vector can be updated as

given below for 5 different scenarios. The proposed marker constraints methodology, from

inferred neighbouring markers, was first published in [ACL08]; the approach is simple, real-time

implementable and does not assume prior knowledge other than fixed inter-marker distance.

This assumption is true in a noise free environment, however since limb segments rapidly

change direction, there is noise on marker motion relative to the skin and motion of the skin

relative to the rigid body (underlying bone). The solutions to the mathematical problems

discussed in this section are given in details, using CGA, in the Appendix A.

4.6.1. All markers are visible on a given limb

Where all markers are visible on a given limb, then:

Zj
k = Hxk

j + vk
j (4.25)

where xk
j is the current state of a tracked marker j on the limb, H is the observation model

(in this case the identity) and vk
j is the observation noise. v is assumed to be zero mean

multivariate normal with covariance R.
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Figure 4.7.: The observation vector in the case of 2 visible markers. The red dot, x̃k
1 , represents the

average value as given in equation 4.29. The green dot, x̂k
1 , is the point on the intersection of the 2

spheres which is closest to x̃k
1 .

4.6.2. One missing marker on a limb segment

In the case where two markers are visible on the limb,

Z1
k = Hx̂k

1 + vk
1 (4.26)

where x̂k
1 is the estimated position of the occluded marker m1 in frame k (assuming, in this

example, that m1 is the missing marker). x̂k
1 can be calculated as given below. Firstly we

calculate Dk−1
1,2 and Dk−1

1,3 which correspond to the vectors between marker m1 and markers

m2, m3 in frame k − 1 respectively. These vectors are given by:

Dk−1
i,j = xk−1

j − xk−1
i (4.27)

Thereafter, these vectors are rotated as

D̂k
i,j = Rk−2,k−1Dk−1

i,j R̃k−2,k−1 (4.28)

assuming that the rotation between the current and the previous frame is the same as that

between the previous 2 frames. Predicting the current rotation using previous rotations offers

marginal improvement to the system performance, and such a small improvement means that

it is not worth the additional computational cost [ALC09]. One obvious way to proceed is to

calculate the point x̃k
1 which is an average of the estimated positions in frame k using the D̂

vectors;

x̃k
1 =

(
xk
2 − D̂k

1,2

)
+

(
xk
3 − D̂k

1,3

)
2

(4.29)

where xk
i is the position of marker i in frame k. We now improve on this estimate by finding

the solution of the intersection of the two spheres in frame k with centres xk
2, x

k
3 and radii

|D̂k
1,2| and |D̂k

1,3| respectively. x̂k
1 is assigned as the closest point on the circle of intersection

to x̃k
1. Figure 4.7 illustrates this process.
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Figure 4.8.: The observation vector in the case of only one visible marker. The red dots, x̂k
j , where

j = {1, 3} represent the estimated position of the missing marker mj as given in equation 4.31.

4.6.3. Two missing markers on a limb segment

In the case of only one marker visible (for example m2) on a given limb, the observation vector

is given as:

Zj
k = Hx̂k

j + vk
j (4.30)

where x̂k
j is the estimated position of the occluded marker mj (j = 1, 3) in frame k. x̂k

j is given

by:

x̂k
j = xk

2 − D̂k
j,2 (4.31)

where xk
2 is the position of the visible marker m2 on the limb in the current frame and D̂k

j,2 is

as described above. In that case, it is assumed that the rotation around the axis joining the

two remaining markers on the limb does not exist. Figure 4.8 demonstrates this process.

4.6.4. All markers on a limb segment are missing

When all markers on a limb are occluded, we consider two possible subcases; the case where

the other limb segment has some markers visible and the case where both limb segments

have all of their markers occluded. If some markers on the other limb segment are visible

(assume the y limb), the missing marker positions can be calculated using the CoR estimate,

Ĉk = yk
i − Rk

y āyR̃
k
y where i = {1, 2, 3}. Our methodology takes advantage of the approach

described in section 4.4.2 for CoR estimation and provides better approximations of the CoR

using information from the adjacent limbs. The observation vector of the Unscented Kalman

filter is then updated as:

Zj
k = Hx̂k

j + vk
j (4.32)

where x̂k
j is the estimated position of the occluded marker mj (j = 1, 2, 3) in frame k. x̂k

j is

given by;

x̂k
j = Ĉk + D̂k

j,c (4.33)
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y āyR̃
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y where i = {1, 2, 3}, and the

estimated marker positions on limb segment x, x̂k
j = Ĉk + D̂k

j,c, where j = {1, 2, 3}. āx and āy are
updated using the predicted marker positions in the current frame.

where D̂k
j,c is an estimate of the vector between marker mj and the CoR. This approach takes

advantage of the fact that the distance between markers and the CoR is constant. This vector

is approximated by D̂k
j,c = Rk−2,k−1Dk−1

j,c R̃k−2,k−1 where Dk−1
j,c = xk−1

j −Ck−1. This assumes

that the rotation of the markers between two consecutive frames remains constant. Figure 4.9

illustrates this procedure.

If both limb segments have all markers occluded, only information from previous frames

can be used. The observation vector, Zj
k, in this instance is calculated using a rotor based

method. This method also assumes that the segment rotation between two consecutive frames

is constant. The observation vector can now be expressed as

Zj
k = Hx̂k

j + vk
j (4.34)

where x̂k
1 is equal to x̂k

1 = Rk−2,k−1xk−1
1 R̃k−2,k−1. This method performs better than a simple

variable velocity model since it ensures that all markers on a limb do not move independently

[ALC09].

4.6.5. Markers visible in only one camera

Each marker can be reconstructed by the motion capture system if it is visible in at least two

cameras. Indeed, looking at numerous real datasets, we have observed a high probability that

the missing markers are not entirely occluded; information about position is often returned by

a single camera. This information identifies a line, L1, starting from the camera and passing

through the position of the missing marker. By relaxing the constraints that the inter-marker

distance is constant and accepting that the real position of the marker is on that line, we

may be able to obtain a more accurate estimate of the position of the relevant marker. This
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Figure 4.10.: The observation vector in the case of 2 visible markers and one marker visible only by
one camera. The red dot, x́k

1 , is now used for the calculation of the observation vector, Z1
k = Hx́k

1 +vk
1 .

position, x́k
1, corresponds to the projection from the point x̂k

1 onto the line L1, as in figure

4.10. This is applicable for the cases in which the motion capture system fully reconstructs

one or two marker locations and another marker is visible in just one camera. If a limb segment

has only one known and one partially visible marker, the system is more reliable when it first

predicts the partially visible marker and then the entirely occluded marker.

4.7. Bone Length Constraints using Inverse Kinematics

The UKF-VTM model for marker prediction returns good estimates of the marker positions,

even if the markers are occluded for an extended period of time. It is, however, easily observable

(see fig. 4.11) that there are instances where the reconstructed markers may break the rigid

body assumption (limbs may not have constant lengths over time), resulting in a violation

of the model’s structure. This is more obvious in extreme cases where many markers from

the same limb segment are occluded for an extended time period (see fig. 4.19); the limb

segment lengths drift (as the inter-joint distances were not fixed to be constant) even if the

estimated marker positions do not significantly differ from their true positions. Therefore, it

seems sensible to constrain the bone lengths to be constant over time, taking into account

the rigidity if the body, as the skeleton methods does; this extension does not presuppose

any knowledge of the model. For such unconstrained models we can preserve bone lengths

using Inverse Kinematics (IK) techniques (see Chapter 3). Ishigaki et al. [IWZL09] implement

a real-time IK control interface for character animation which translates the performance

into corresponding actions; that was achieved by integrating prerecorded motions with online

performance and dynamic simulation. If the input motion does not match the conditions, a

kinematic process is applied to match users’ motion with the example interactions. However,

the proposed inter-joint constraint approach requires offline training, meaning that the results

depend on the training data, and prior knowledge of the model is required. To the best of our

knowledge, this is the first time that a real-time IK technique has been used for CoR correction

under multiple marker occlusion in optical motion capture.
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Figure 4.11.: The results produced using the UKF-VTM model. It is seen that the distances between
hips and knees change, since it is not guaranteed that these distances are constant. The observed
positions are coloured blue, while the predicted positions are red.

4.7.1. Adjusting FABRIK for CoR correction in optical motion capture

In order to achieve a real-time framework, the proposed IK solver must process a large number

of frames per second and must return natural poses which satisfy the user constraints. FAB-

RIK, as described in Chapter 3 and [AL10d], is a real-time IK solver which returns smooth

postures in an iterative fashion. FABRIK simply repositions the CoRs in order to ensure the

constant inter-joint distance over time, without considering the limb segment rotation; the

limb segment orientation is known since there are 3 markers attached to each limb segment,

thus time and computational cost can be saved. Nevertheless, FABRIK can also treat more

complex cases where it is desirable to estimated the bone rotation.

Problems with Serial Chain models

FABRIK uses the positions of the joints that have been estimated using predicted marker

positions to find updates that meet the fixed inter-joint distance assumption. In the most

general case, where the estimated CoRs are not positioned at the end of the chain, the solution

can be achieved using a forward and backward iterative mode, very similar to the basic FABRIK

algorithm. The modified method starts from a joint of the chain which was calculated using

observed marker positions and works forwards, adjusting each estimated joint along the way

until the next joint which was calculated using observed data. Thereafter, it works backward

in the same way, in order to complete a full iteration.

A graphical representation of the algorithm in action is given in figure 4.12. Assume p1, ...,pn

are the joint positions of a chain, where p1 and pn are joint positions calculated using observed

data, and the joints inbetween are joints estimated using predicted marker positions. Set the

distances between each joint to be di = |pi+1 − pi|avg, for i = 1, ..., n− 1, b = p1 and t = pn;

these distances can be established by averaging over time from the frames where the markers,

and the joints, are available. Then, check whether the target is reachable or not; find the



102 Motion Capture Solutions under Marker Occlusions

Algorithm 4: A full iteration of FABRIK for CoR correction.
Input: The joint positions pi for i = 1, ..., n, and the average distances between each joint

di = |pi+1 − pi|avg where n is the number of joints of the chain.
Output: The new joint positions pi for i = 1, ..., n.

3.1 b = p1; t = pn;
3.2 % Initialisation of the difA value.
3.3 difA = 1
3.4 while difA > tol do
3.5 % STAGE 1: FORWARD REACHING
3.6 % Set p1 to its initial position.
3.7 p1 = b
3.8 for i = 1, ..., n− 1 do
3.9 % Find the distance ri between the estimated joint position pi+1 and the joint pi

3.10 ri = |pi+1 − pi|
3.11 λi = di/ri
3.12 % Find the new joint positions pi.
3.13 pi+1 = (1− λi)pi + λipi+1

3.14 end
3.15 % STAGE 2: BACKWARD REACHING
3.16 % Set pn to its initial position.
3.17 pn = t
3.18 for i = n− 1, ..., 1 do
3.19 % Find the distance ri between the joint position pi+1 and the estimated joint pi

3.20 ri = |pi+1 − pi|
3.21 λi = di/ri
3.22 % Find the new joint positions pi.
3.23 pi = (1− λi)pi+1 + λipi

3.24 end
3.25 difA = |p1 − b|
3.26 end

distance between p1 and pn, dist, and if this distance is smaller than the total sum of all the

inter-joint distances, dist <
∑n−1

1 di, the target is within reach, otherwise, it is unreachable.

If the target is within reach, a full iteration is performed in two stages. In the first stage,

the algorithm estimates each joint position starting from p1, moving forward to pn. Thus,

initialise p1 = b and find the line, l1, which passes through the joint positions p1 and p2. The

new position of the 2nd joint, p′
2, lies on that line with distance d1 from p1. Similarly, the new

position of the 3rd joint, p′
3, can be calculated using the line l2, which passes through the p3

and p′
2, and has distance d2 from p′

2. The algorithm continues until all new joint positions are

calculated, including p′
n.

Having in mind that initially pn was the observed position of the nth joint, a second stage

of the algorithm is needed. A full iteration is completed when the same procedure is repeated

but this time starting from the observed position of the nth joint and moving backwards to the

1st joint. Therefore, let the new position for the nth joint, p′′
n, be its initial position t. Then,

using the line ln−1 that passes through the points p′′
n and p′

n−1, we define the new position

of the joint p′′
n−1 as the point on that line with distance dn−1 from p′′

n. This procedure is

repeated for all the remaining joints, including p1. The procedure is then repeated, for as

many iterations as needed, until p1 and pn are close enough (to be defined) to their initial,

observed positions. FABRIK always converges to any given chains/goal positions, when this

is possible. If there are constraints which do not allow the chain to bend enough or if the
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Figure 4.12.: A simple example of FABRIK implementation for the case where the estimated joints
are positioned inbetween 2 observed joint positions. (a) The initial position of the chain, where {pi}
are observed and {p̂i} are estimated joint positions. (b) The first phase of the algorithm; the joint p′

i

has been adjusted as the point on line li−1 with distance di−1 from pi−1. (c) The second phase of the
algorithm: let the new position of p′

5 be its initial position p5; repeat the procedure starting this time
from the other side of the chain. (d) The final posture; the algorithm is repeated for as many iterations
as needed until the difference between the observed and the returned positions of the joints p1 and p5

is less than a given tolerance.

target is not within the reachable area, there is a termination condition which compares the

previous and the current position of the joint p1, and if this distance is less than a specified

tolerance, FABRIK terminates its operation. Similarly to the prototype FABRIK algorithm,

several optimisations can be achieved using CGA to produce faster results and to converge to

the final answer in fewer iterations. Another simple optimisation is the direct construction of

a line pointing towards pn, when the target is unreachable, adjusting the distances in such a

way that each distance has changed uniformly. The adjusted FABRIK for CoR correction is

illustrated in pseudo-code in Algorithm 4.

There are, indeed, some special instances where FABRIK does not necessarily work in an

iterative fashion. Such a special case is when the joints, which have been estimated using

predicted markers, are located at the end of the chain. This is a simplified case of the general

solution, since the answer is given directly in one single iteration. In that case, it is ensured

that the inter-joint distance remains constant and the bone lengths are not stretched out. The

new simplified algorithm is given here: assume pi is a true joint position. The joint update

p′
i+1 is set as the point on line li that passes through pi and pi+1 and has di distance from pi.

This procedure is repeated for all the remaining estimated joints until the end of the chain. A

graphical representation of an implemented example is given in figure 4.13.
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Figure 4.13.: A simple case where the estimated joints are located at the end of the chain. In this
example the serial chain has 4 joints where p1 and p2 have been calculated using observed marker
positions and the p̂3 and p̂4 using predicted markers positions. Thus, set p′

3 to be the point on line l2
which has distance d2 from p2 and p′

4 the point on line l3 that has d3 distance from joint p′
3.

Problems with tree models

In reality, most of the legged models are comprised of several kinematic chains in a tree fashion.

The proposed algorithm can be easily extended to process tree models with multiple serial

chains. The solution is similar to the original version of FABRIK for multiple end effectors,

given in Chapter 3. Hence, if the sub-base3 joint is an observed position, FABRIK is used on

each chain with estimated CoR positions individually, starting from the sub-base, in a forward

and backward iterative fashion. If the sub-base is an estimate, the same procedure is applied

but this time starting from the observed joints of the connected chains and moving towards

to the sub-base. This will produce as many different positions of the sub-base as the number

of the connected chains. The new position of the sub-base will then be the centroid of all

these positions. In the second stage, the normal algorithm is applied separately for each chain,

starting now from the sub-base and moving outwards to the starting joints. The method is

repeated until all observed joints have no significant change between their initial and updated

positions.

Applying Constraints

The main aim of the work in this Chapter is to describe a general solution, where each single

joint is treated as ball joint, allowing 3 degrees of freedom. In this way, we can ensure the

generality of the proposed method, producing solutions without prior knowledge of the model.

Nevertheless, in cases where it is desirable to incorporate joint restrictions, FABRIK can be

easily adapted to support joint limitations by readjusting the target position and orientation,

on each step, to satisfy the joint biomechanical limits, as described in Chapter 3, [AL10d] and

[AL09].

Obviously, the more information available regarding the model’s structure and joint con-

straints, the more accurate and efficient will be the results. This information can help to give

a visually more realistic motion within a feasible set; however, it will limit universal use of the

proposed methodology and fails to satisfy our aim of no prior knowledge of the model.

The Inverse Kinematic system ensures that, even if the marker prediction system fails to

track the marker positions, the derived CoRs will be good estimates of their true positions.

3A sub-base joint is a joint which connects 2 or more chains.
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Table 4.1.: Average results (over 20 runs) under multiple cases of occlusion (large occlusions of 2500
frames in total).

Method Missing markers Marker’s Worst Case CoR’s Worst Case Proc. (limbs
on a limb segment Error (cm) scenario (cm) Error (cm) scenario (cm) per second)

One marker 1.2958 3.5677 1.0820 1.7888
UKF-VTM Two markers 3.4737 7.6584 1.9867 2.7845 315

All markers 8.4012 12.8749 7.8591 13.1183
One marker 9.4687 15.2552 7.8777 6.1189

Interpolation Two markers 10.5241 16.8874 9.3340 8.5874 900
All markers 11.0010 17.2282 12.2514 20.2111
One marker 1.8574 4.8811 1.5874 3.1147

Extrapolation Two markers 4.5214 9.0444 2.5147 3.5558 270
All markers 10.5961 13.8541 11.5824 15.2588
One marker 1.3982 3.8971 1.2356 2.1496

EKF Two markers 3.5331 8.0145 2.0302 3.0098 370
All markers 8.4205 13.0014 7.9055 13.1198

This happens since the IK procedure restricts the limb segment (bone) length to a constant

value over time. The length of each limb segment is calculated when all joints have been

estimated using observed marker positions in previous frames. The inter-joint distances in

reality are not constant since marker positions are noisy, violating the assumption of a fixed

inter-marker pairwise distance. The effectiveness of the proposed method is strongly related

to the stability of the inter-joint distance. The proposed bone length constraint is independent

and can be easily adapted to most marker prediction methods for CoR estimation.

Self-Collision Determination: Collision detection has been a fundamental problem in

computer animation, physically-based modeling, geometric modeling, and robotics. Since the

data used in these examples are captured from a markered optical motion capture system

and since the 3D animated humanoids do not have a mesh that defines their external shape,

self-collisions are not considered. Nevertheless, self-collisions can be handled using existing

techniques, such as [LG98].

4.8. Results and Discussion

Experiments were carried out using a 24 camera PhaseSpace motion capture system capable of

capturing data at 480Hz [Pha]. The algorithm described in this chapter can process up to 300

limb segment pairs per second (using MATLAB). Our datasets comprise real data (i.e. captured

data with natural occlusions or occlusions generated by artificial deletion) with more than

10000 frames in each. Our methodology has been tested on various motions including dancing

(14 segment body datasets), fast walking (7 segment leg datasets) and boxing (5 segment arm

datasets). Figure 4.14 shows 2 of the models that have been used in our experiments. Using real

data with occlusions generated by artificial deletion, we are able to calculate the error of the

proposed methodologies; the error is measured as the average distance between the observed

and the estimated position (for marker and the CoRs) after artificial deletions. The error varies

between different instances of marker occlusion. As more markers become available, more

information relative to the limb segment is available and thus, a higher accuracy is achieved.
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(a) (b)

Figure 4.14.: Two of the models used in our experiments. (a) a 14 segment human body, (b) a 7
segment lower human body.

The magnitude of the error reported in the results is given in terms of real world distances.

Within this work, our methodology (referred as UKF-VTM) was tested and compared against

some of the most popular marker prediction approaches: an EKF model, such as [ACL08],

using similar marker constraints as the ones proposed here, a cubic spline interpolation and a

real-time extrapolation method with marker position constraints, as reported in [PLH+09].

Using the VTM we took into consideration the velocity, direction and acceleration changes

of the markers’ trajectories over time. Certain drawbacks of the simple EKF were overcome

by using a more evolved and sophisticated method; the use of a variable turn model gives

significant improvements in cases where the trajectories of the markers are variable and have

abrupt fluctuations in speed and direction. The proposed system (UKF-VTM), without ap-

plying bone constraints, returns an average error (over 20 runs) of 1.296cm in the case of one

missing marker, 3.474cm when 2 markers are missing and 8.401cm when all markers are oc-

cluded. The corresponding CoR estimation error is 1.082cm in the case of one missing marker,

1.9867cm in the case of two markers and 7.859cm in the case where all markers are not visible

to the cameras. Table 4.1 lists and compares the results between each method implemented

here under several occlusion scenarios. In general, if the methods are not constrained with

the proposed inter-marker constant distance assumption, they fail to track the missing marker

paths when the occlusion lasts longer than a time threshold. Table 4.1 also tabulates the worst

case scenario (distance between the observed and predicted positions) of marker prediction

and CoR estimation. The worst case scenarios usually appear on abrupt changes in velocity

and direction of the missing marker during the occlusion period, where the UKF-VTM model

requires some time to efficiently track the target. Obviously, the interpolation method has

the lowest computation cost, however it is an off-line application. The UKF-VTM framework

increased the processing time by 20% compared to the simple EKF, processing 315 limb seg-

ment pairs per second in MATLAB; which does, however, still allow real-time implementation.

The UKF-VTM method performs better than the other methods looked at here, resulting in

the most accurate results; our methodology efficiently recovers good estimates of the missing

markers and accurate real-time CoR estimation. A further error reduction was observed when
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Table 4.2.: Average results (over 20 runs) on real data with occlusions generated by deletions. Case
of one missing marker on each limb segment for more than 1500 frames.

Entirely occluded Partially visible Change
(Error cm) (Error cm)

Marker position 1.3458 0.2554 -81.02 %

CoR position† 2.2247 0.5628 -74.70 %
† when āw is updated using the predicted data.

the missing markers were partially visible to one camera. The error is significantly decreased,

by 80% for marker prediction and 75% for CoR estimation, compared to the case where this

information was ignored. Table 4.2 states the prediction error for the case of one missing

marker on each limb segment when the missing markers are both entirely occluded and visible

in just one camera.

The difference between true and estimated positions is further reduced when the fixed inter-

joint pairwise assumption was taken into consideration. The CoR error, in our methodology,

is decreased on average (over 30 runs) by 11.9% in total, 2.96% when the estimated joints

are located at the end of the chain and 12.7% when they are positioned between 2 observed

positions. FABRIK ensures that the inter-joint pairwise distances are constant over time, thus

eliminating the error in the CoR estimation due to unnatural bone extensions. The error

reduction is larger in cases where the estimated joints are between 2 observed CoR positions,

since both observed joints, in an iterative fashion, constrain the inter-joint distance from the

estimated joints. In the case where the estimated joints are positioned at the end of the chain,

only one observed joint contributes in the final solution. Table 4.3 presents the average error

and achieved error reduction after applying IK to the case of a humanoid model with artificial

deletions on 6 markers (over 30 markers in total) on more than 2500 frames out of 8000. At the

same time, the processing time was increased by only 5.27%, processing now approximately

300 limb segment pairs per second. FABRIK has been applied to all methodologies ensuring

that the inter-joint distances will remain unchanged over time; the average CoR error was

reduced on average by 12.92% for the EKF, 45.33% for the extrapolation method and 62.8%

for the interpolation approach.

Figure 4.15(a) shows zoomed examples of the true and predicted x-positions of an occluded

marker and the CoR, after incorporating FABRIK, for the case of a single occlusion and a

marker visible to just one camera, respectively. It is clear that the occluded marker can be

tracked with high accuracy when it is visible in at least one camera and its CoR position can

be reconstructed efficiently even if the occlusion period exceeds 1500 frames. Figure 4.15(b)

also shows an example of the error variation of all methodologies due to occlusion for the case

of 1 missing marker on each limb segment. Clearly, UKF-VTM has the lowest error both on

average and in the worst case scenario; this error is further decreased when the marker is visible

to just one camera.

Figure 4.15(c) reinforces the above showing the cumulative distribution function (CDF) of

the estimation error for the case of one missing marker on each limb segment. The x−axis
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Table 4.3.: Error reduction using Inverse Kinematics.

Method Overall Results Joints are located at Joints are located in
the end of the chain between 2 true joint positions

Error (cm) Change Error (cm) Change Error (cm) Change

CoR† 2.0268 2.1013 2.0131
UKF-VTM

CoR‡ 1.7856 -11.90% 2.0391 -2.96% 1.7574 -12.70%

CoR† 7.7149 8.3149 7.2650
Interpolation

CoR‡ 2.8698 -62.80% 3.7950 -54.35% 2.2937 -68.42%

CoR† 4.2437 4.9334 3.7263
Extrapolation

CoR‡ 2.3200 -45.33% 2.8495 -42.25% 1.9712 -47.10%

CoR† 2.5077 2.8684 2.3509
EKF

CoR‡ 2.1836 -12.92% 2.5474 -11.19% 2.0212 -14.02%

† The CoR was calculated using only predicted marker positions.
‡ The CoR was corrected using FABRIK, assuming that bones have fixed length over time.

shows the estimation error and the y−axis shows the probability, for y = a, of having an error

less than or equal to a. Hence, for example, the probability the estimation error is less than or

equal to 1.2cm is approximately 0.57 for the extrapolation and less than 0.4 for interpolation,

while it is 0.62 for the case of the UKF-VTM. The median estimation error of the markers

using the EKF model is approximately 1.12cm (0.83cm for the CoR), where the corresponding

median error for the case of UKF-VTM is approximately 1.09cm (0.75cm for the CoR and

0.12cm when markers are visible to just one camera).

Obviously, interpolation produces smooth results since it uses previous and future positions.

Our method shows small oscillations or discontinuities between the last predicted position

and the first frame when the marker become available. This is expected since we do not use

future positions and as the markers become available, we use the observed positions. This

phenomenon can be avoided if, instead of using the observed marker position as the final result

(after the occlusion), we continue using the UKF framework, having observation states as

the true marker positions. In that way, although the average errors of the marker and CoR

estimates will show a marginal increase, we will obtain smooth results without oscillations.

Extrapolation and interpolation return useful predictions for short-time occlusions but fail

to track the marker positions when the occlusion is maintained for extended time periods, es-

pecially if markers change rapidly in direction and velocity. In particular, the path followed by

the interpolation method does not reflect the actual state of the missing marker, but only con-

nects the available positions using a cubic spline shape. In contrast, the UKF-VTM performs

fairly well even if markers are missing for long time periods.

Figure 4.16 and 4.17 show examples of using our algorithm on real data; in blue are the true

(observed by the mocap system) positions of the markers and CoRs and in red the predicted

positions. Figure 4.18 is another example that compares the results on the leg model; the left

picture presents the results when only the integrated UKF-VTM model is used, and the right

picture shows the results when bone length control was incorporated using FABRIK. Note the

bone length violation, which is more obvious on the hips.
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Figure 4.15.: Example showing comparison results for each methodology for the case of 1 missing
marker on each limb segment; occlusions were introduced for extended time periods of up to 1500
consecutive frames. The left column shows the results for marker predictions and the right column for
CoR estimates, after applying FABRIK. (a) the zoomed x-coordinate path over time (in this example
note that the black and green curves for the markers are exactly overlayed), (b) the zoomed error
variation over time, (c) the CDF of the estimation error (over 10 runs).

Figure 4.19 shows another example of implementation under an extreme case with extended

marker occlusions; the top picture shows the results when the fixed inter-joint distance was

not imposed and the bottom picture when FABRIK was applied. Obviously, in the first case

the skeletal structure was violated since the bones were not restricted to their original lengths;

in the second case the results have been improved to a visually more natural shape.
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Figure 4.16.: Examples of implementation on real data (Lower body). On the left side of the picture
there are marker occlusions; on the right side of the image these markers have been correctly estimated.
The markers, on each limb segment, are clustered and coloured using different colours.

Experiments demonstrate that the proposed methodology can effectively track the occluded

markers with high accuracy, even if they are occluded for extended periods of time, recovering

in real-time good estimates of the true joint positions. FABRIK controls and corrects the CoR

estimates decreasing the error between the estimated and true positions, thereby enabling real-

time skeletal reconstruction. The resulting motion is natural and smooth, without oscillations

and discontinuities, resembling that of true human movements.

A video included in the supplementary materials demonstrates our methodology and shows

its performance with and without incorporating the FABRIK algorithm.
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(a) (b)

Figure 4.17.: An example of marker prediction and CoR estimation using the proposed methodology.
The observed positions are coloured blue and the predicted positions red. (a) The artificially deleted
data, (b) the predicted data.

(a) (b)

Figure 4.18.: An example of FABRIK implementation for CoR correction. Blue represents the
observed positions and red the predicted positions: (a) using only the integrated UKF-VTM framework,
(b) using FABRIK for bone length control.

4.9. Conclusion

This chapter describes a methodology related to the problem of using marker-based optical

motion capture data to automatically establish a skeleton model to which the markers are

attached. It presents a real-time prediction method that estimates the missing markers and

reconstructs the skeletal motion. An Unscented Kalman Filter framework with a variable turn

model has been deployed for marker tracking. Information about the missing markers in the

current frame inferred from an approximate rigid body assumption has been used for the obser-
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(a) (b)

Figure 4.19.: An example of FABRIK implementation under extreme cases with extended data
occlusion. (a) shows results using the integrated UKF-VTM, (b) shows the results when FABRIK
was applied in order to maintain the fixed inter-joint distance assumption. The observed positions are
coloured in blue and the predicted in red.

vation states. The proposed marker constraint model is simple and real-time implementable.

At the same time, the system takes advantage of the information returned by each single cam-

era, regarding the position of the missing markers which are visible to just one camera. The

predicted data is then used for real-time joint localisation. Thereafter, the joint positions are

re-positioned using Inverse Kinematics taking into account the fact that the inter-joint dis-

tance is constant over time. FABRIK is a real-time iterative IK solver which ensures that the

bones lengths remain constant over time, resulting in more feasible motion. Our methodology

outperforms in accuracy the methods used for comparison in this work. It is able to maintain

real-time marker predictions, thus enabling good estimates of the CoR, even in the presence of

several marker occlusions on each limb segment. It is reliable even if the limb rapidly changes

direction and the occlusions exist for large sequences. The proposed technique could also be

used to isolate bad inputs from single cameras; it is a common phenomenon that even one

error in large marker inputs can result in several errors per second, pulling the marker position

out of the expected path. Thus, this method can be utilised to eliminate pops and jumps from

camera switching and errors as they fall outside the predicted positions.

Future work will introduce biomechanical constraints to restrict motions to those from a

feasible set; however, prior knowledge of the model and joints will then be needed. Also, a

hybrid system with low cost inertial measurement units could be used to validate the method

proposed here.
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Hand Pose Tracker

A rticulated hand-tracking systems have been widely used in virtual reality systems and

the computer games industry, but due to their complexity and high computational cost,

accurately tracking hands remains challenging. In this chapter, we focus on real-time hand

tracking and reconstruction using optical motion capture technology. The IK system developed

in Chapter 3 is adapted to control the postures of the hand, subject to physiological constraints

that restrict the allowed movements to a feasible and natural set.

5.1. Introduction

In recent years, there has been a growing demand for reliable hand motion tracking systems,

a technology used to turn the observations of a moving hand into 3D position and orientation

information. Such information can be used for hand gesture recognition; to generate virtual

figures for films or computer games; and for human-computer interaction (HCI) including

interaction with game consoles. However, building a fast and effective hand pose tracker

remains challenging; the high dimensionality of the pose space, the ambiguities due to self-

occlusions and the significant appearance variations due to shading, make efficient tracking

difficult.

Marker-based motion capture has been demonstrated in several interactive systems (includ-

ing but not limited to hand interaction) producing results which are highly accurate and easily

configurable. There are, however, instances where we do not have many markers available or it

113
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Figure 5.1.: The impulse glove designed by PhaseSpace for real-time finger-tracking solutions.

is impossible to attach 3 markers on each limb segment; the large number of markers needed is

often prohibitive. It may therefore be infeasible to track the object and reconstruct its skeleton

model (i.e. the hand model). Hence, it would be useful to find a new way of capturing the

movement of these articulated models using the minimum possible number of markers. Such a

method is presented in this chapter, reproducing good estimates of real captured hand motion.

Instead of attaching 3 markers on each limb segment, a single marker is attached and captured

on each finger (end effector), 1 marker at the chain base (root) and 2 markers at strategic

positions to help us define the hand orientation. The markers’ positions are tracked using

an optical motion capture system, such as [Pha]. Physiological joint constraints are applied

to find the hand palm and to ensure that the hand motion is within a feasible set, giving a

smooth and visually natural motion of the hand. An Inverse Kinematics solver (FABRIK)

is then incorporated to estimate the remaining joint positions and to fit them to the hand

model. In addition, a marker prediction system, similar to the one presented in chapter 4, is

applied to deal with cases where the markers are not visible to the motion capture cameras.

The results were visualised using a mesh deformation algorithm, driving the animation of the

hand according to the underlying hand skeleton. The skeletal fitting and the incorporation of

constraints are real-time implementable and the hand motion is tracked smoothly and without

oscillations, even with a low frame rate.

5.2. Related Work

There are many approaches for tracking and configuring the hand model. The hand gesture

identification algorithms can be classified into two major classes: glove-based and vision-based

methods. In general, glove-based methods are real-time, they are, however, expensive (e.g. P5

Data glove) and detect only a limited set of finger movements with low accuracy. Wang and

Popovic [WP09] and Fredriksson et al [FRF08] proposed methods for hand tracking using a

single camera and an ordinary cloth glove which was imprinted with a custom pattern; the pose

corresponding to the nearest database match was then retrieved. Although this offers a simple,

computationally cheap and promising solution, the resulting poses are highly correlated with

the training data making these methods less reliable than optical mocap systems.

The vision-based methods, on the other hand, are more accurate, but they have problems

with occlusions, noise and spurious data. Lien and Huang [LH98] proposed a hand model
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together with a closed-form Inverse Kinematics solution for the finger fitting process. The

3D positions were obtained using colour markers and stereo vision, and the finger poses were

chosen using a search method which finds the best solution amongst all possible positions.

While this method is implementable in real-time, it is complex and can fail when different size

models are used. Park and Yoon, [PY06], also used a marker-based motion capture system;

a LED-glove has been employed to produce interactions in multi-model display environments

where the gestures were recognised and classified using hidden Markov chains. De la Gorce et

al [GPF08] proposed a 3D hand tracking approach from monocular video. A formulation for

exploiting both shading and texture is presented, which is able to handle the problem of self-

occlusions. However, due to the high dimensionality of the human hand, this method might

suffer from high computational complexity and singularities.

Several papers [RK94, SMC01, MTHC03, STTC06] focus on statistical methods, such as

an Unscented Kalman Filter and a Hierarchical Bayesian Filter, to track the hand motion.

These statistical methods approximate the posterior by a single Gaussian and update these

approximations via a linearisation of the measurement process. [STW07] employed a mean

shift embedded particle filter for visual tracking; they incorporate the mean shift optimisation

into particle filtering to move the particles to local peaks in the likelihood. However, such

methods are still far from real-time, therefore limiting their use.

In [SMFW04, DDHF06], a bare-hand tracking approach is implemented using edge data

detection and silhouettes to identify the pose of the hand. Sudderth et al, [SMFW04], used a

nonparametric belief propagation (NBP) algorithm for tracking the hand poses and kinematic

constraints; in that way, they were able to handle cases with self-interactions and self-collisions.

Nevertheless, these methods have high computational cost making it difficult to use them for

real-time interactions in control applications. In contrast, [LGPW98, DMR06, SK07] achieve

interactive speeds using bare-hand tracking systems at the cost of resolution and scope. Cerveri

et al, [CDML+07], utilised a kinematic model using a multi-camera system and markers, which

consists of a hierarchical chain and rigid body segments. Limitations relative to the joint

rotational and orientational constraints were taken into consideration to restrict the motion to

natural postures. In [FAT05] and [CFAT07], vision-based hand shape estimation methods were

introduced using shape features acquiring from camera images. The extracted features were

then used to approximate the hand’s state and the local state of each finger was estimated

using Inverse Kinematics and physical hand constraints. Finally, Kaimakis and Lasenby [KL07]

used a set of pre-calibrated cameras to extract the hand’s silhouette as a visual cue. The 2D

silhouette data is then modelled as a conic field and physiological constraints are imposed to

improve the reliability of the hand tracking [KL09].

A prototype version of the hand model methodology proposed in this work was published in

[AL10b]. That was a first step towards an effective real-time hand motion tracking; however,

most of the currently implemented physiological constraints were ignored, reducing the final

reconstruction quality. In addition, the hand was not visualised using a mesh deformation

algorithm, thus it was difficult to observe the differences in shape as well as the error on the

resulting pose.
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Figure 5.2.: The hand’s model geometry used in our implementation.

PhaseSpace, [Pha], have designed an impulse glove with attached markers (see figure 5.1)

for real-time finger-tracking solutions. This is similar to the configuration we will consider in

this chapter.

5.3. Articulated Hand Model

Human motion is typically represented as a series of different configurations of a rigid multibody

mechanism consisting of a set of segments connected by joints. These joints are hierarchically

ordered and have one or more degrees of freedom (DoF). The DoFs describe the rotations

relative to their parent joints up to the root joint, for which the position and orientation

are represented with respect to a reference coordinate system. Most motion capture systems

reconstruct figures by tracking several markers placed over the body of the performer. Hence,

in order to configure a human pose, it is important to locate the end effectors in strategic

positions as they are more easily specified by an animator and tracked by mocap systems.

It is assumed that the hand geometry, meaning the initial joint configuration of the hand,

is known a priori. An example of a hand model is graphically represented in figure 5.2. The

proposed hand model consists of 25 joints and has in total 25 DoFs. The end effector positions

are captured using an optical motion capture system, such as PhaseSpace [Pha]. Using inverse

kinematics, we then tracked and reconstructed the hand poses over time. The markers are

identified (e.g. in PhaseSpace, each LED marker is pulsed at a different frequency) so that

it is known a priori on which finger each marker is placed. It is also important to know the

orientation of the hand in order to efficiently incorporate constraints. This can be achieved

by attaching 2 extra markers at specific positions, p and q, on the back of the hand (reverse

palm). Assuming that the palm is always flat, we can find the plane describing the orientation

of the hand using p, q and the position of the base root, r, which also lies on the palm plane.

For simplicity, markers p and q can be placed at the joint positions F1,2 and F4,2 respectively.

A factor which should also be considered is the noise on the marker data. The motion of
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the markers relative to the skin and the motion of the skin relative to the underlying bone

constitute the most important causes of noise. In addition, noise due to miscalibration of the

optical system and the optical measurement noise might affect the accuracy of the marker

positions. The precision of the system is also highly related to the markers’ positioning; the

markers should be carefully placed at the end positions of the finger as well as at the root in

order to fit to the hand geometry.

5.4. Inverse Kinematics

It is time-consuming for an animator to manually set all the DoFs of a virtual character. It

is therefore more sensible to use a simulation mechanism, such as an Inverse Kinematics (IK)

solver, to situate limbs according to their known end effector positions. The IK techniques

require only positions and orientations of certain joints, usually named end effectors, to be

specified by the animator and the remaining DoFs are automatically determined according to

criteria that depend on the IK variant.

For the purpose of this study, FABRIK is chosen due to its efficiency, implementation sim-

plicity and low computational cost. As we have seen in Chapter 3, FABRIK is a flexible IK

solver which supports most of the existing joint types, is able to solve problems with multiple

end effectors and targets, and can handle cases with closed loops.

5.4.1. The hand model

Before employing the IK solver, it is crucial to find the fingers’ orientations, the chain roots

and the end effectors for each chain; the target positions are assumed to be known since they

are tracked by the motion capture system. The procedure is simple. Firstly, we estimate the

hand orientation; thereafter, we calculate the palm joints and the finger orientations at each

time step. When each finger orientation is known, the finger joints at the previous time step

are translated and rotated in such a way that all joints belong to the current finger plane.

Finally, a constrained version of FABRIK, with rotational limitations, is incorporated to fit

the joints of each finger. This procedure is given in detail in the following paragraphs.

The first step is to find the hand orientation; hence, by accepting that the hand plane Φx is

similar to the palm plane and that the markers p, q and r are lying on that plane, the hand

orientation, meaning the plane Φx, can be estimated. Therefore,

P =
1

2

(
p2n+ 2p+−ñ

)
Q =

1

2

(
q2n+ 2q +−ñ

)
(5.1)

R =
1

2

(
r2n+ 2r +−ñ

)
where P , Q, and R are the 5d null vectors representing points p, q and r respectively, and n
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Figure 5.3.: The palm plane constraints: the hand plane can be calculated using the marker positions
P , Q and R, accepting that the markers lie on that plane and that the hand and palm planes are similar.
The rest of the palm joints can be estimated, assuming that the inter-joint distances remain constant
over time, by intersecting the spheres Σp and Σq with centres at the marker positions P and Q and
radii of the distance between their centre and the joint position we are looking for.

and n̄ are the null vectors in CGA, as described in section 2.2. The plane Φx is equal to

Φx = P ∧Q ∧R ∧ n =
⟨
⟨⟨PQ⟩2R⟩3 n

⟩
4

(5.2)

Note that the form given on the right hand side of 5.2, and other relevant equations, is useful

for implementation purposes.

Calculating the palm joints

The next step is to incorporate constraints to obtain other palm joints. Thus, by assuming that

the inter-joint distances (for the joints Fi,1 where i = 1, . . . , 5 and Fj,2 where j = 1, . . . , 4) are

fixed over time and that all these joints lie on the palm plane, we can easily locate them using

basic geometric entities such as planes, circles and spheres. An example of palm constraints

is given in figure 5.3. For instance, the joint position we are working on can be estimated by

intersecting the spheres with centres being the marker positions p and q and radii being the

distance between the marker and that joint position (taken from the model). Therefore, find

the sphere with its centre at the marker position P and radius equal to the distance between

the marker P and the joint we are working on

Σp =

(
P − 1

2
ρ21n

)
I (5.3)

where ρ is the sphere radii. Similarly, find the sphere with centre the marker position Q and

radius equal to the distance between the marker Q and the joint we are working on

Σq =

(
Q− 1

2
ρ22n

)
I (5.4)
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Figure 5.4.: The joints’ positions at times k − 1 and k. Each finger joint at time k − 1 needs to be
rotated in such a way that all joints of that finger lie on the plane of the current frame k.

The intersection of the two spheres gives a circle or a single point or no intersection. Thus,

the meet between the two spheres is given by,

C = Σp ∨ Σq =
[
⟨ΣpΣq⟩2

]∗
(5.5)

• if C2 > 0, then C is a circle. In that case, the possible solutions are given by intersecting

the circle C and the palm plane Φx

B = C ∨ Φx = [⟨CΦx⟩3]
∗ (5.6)

– if B2 > 0, the meet between C and Φx gives two points which can be extracted via

projectors, as given in section 2.2.5. The new joint position is assigned as the point

that is closer to the previous joint position (at time k − 1).

– if B2 = 0, the intersection is a single point X = BnB.

– if B2 < 0, the intersection does not exist. For that instance, the new joint position

is then taken as the nearest point on circle, C, from the previous joint position (at

time k − 1, see Appx A.1 for the solution).

• if C2 = 0, the intersection is a single point X = CnC.

• if C2 < 0, the two spheres do not intersect. In that case, the final joint position is given

by averaging the distance between the two markers x = (p+ q)/2.

Calculating the finger joints

In order to estimate the finger joints, we need to find the finger planes Φi, for i = 1, . . . , 4.

Each Φi can be calculated using the known joint positions Fi,2, the marker positions Fi,5 and

by assuming that they are perpendicular to the palm plane Φx (note that this does not hold

for the thumb plane Φ5). Since both points from each finger are known (the motion capture

system tracks the end effector positions Fi,5 and the finger roots Fi,2 lie on the palm plane with

constant distance from the attached markers p and q, as explained in previous paragraphs),

each finger plane can be estimated at the current time frame. The vector that is perpendicular
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Figure 5.5.: The current joint positions, after rotating them in order to lie on the current finger plane
Φk

i . The problem of orientation is therefore solved and FABRIK can then be utilised assuming that the

root of the chain is F k
i,2, the end effector is the point F̂ k

i,5 and the target is the current marker position

F k
i,5.

to the hand plane Φx is given by

n̂ = Φ∗
x −

1

2
(Φ∗

x · n̄)n (5.7)

as explained in section 2.2.5. The finger planes can then be calculated as

Φi = Fi,2 ∧ Fi,5 ∧ n̂ ∧ n =
⟨⟨
⟨Fi,2Fi,5⟩2 n̂

⟩
3
n
⟩
4

for i = 1, . . . , 4 (5.8)

The thumb orientation Φ5 can be estimated using the marker position F5,4, and the joint

positions F1,2 and F5,2 that lie on the palm, assuming that when the thumb bends to the

ventral side of the palm, it always points at the joint F1,2 (approximately true in practice).

The next step is to estimate the rotation between the previous and the current frame of each

finger plane. This can be done using CGA and rotors; the rotor R which expresses the rotation

between the plane in the previous frame and the plane in the current frame, for each finger,

can be found using either the Procrustes formulation [Hor87] or the GA equivalent given in

[LFLD98]. Then each finger joint at time k − 1 is translated and rotated in such a way that

all joints of a given finger lie on the plane of the current frame k, as demonstrated in figures

5.4 and 5.5. Hence,

F̂ k
i,j = RF k−1

i,j R̃ (5.9)

where i = 1, . . . , 4 and j = 3, 4, 5 (except for the thumb where i = 5 and j = 2, 3, 4).

All joints now lie on plane Φk
i . Lastly, FABRIK is applied to each finger chain, assuming

that the root of the chain is F k
i,2, the end effector is the rotated point F̂ k

i,5 and the target is the

current marker position F k
i,5, as shown in figure 5.5. The inter-joint distances are constant over

time, thus, for computational efficiency, they can be calculated and stored at the first frame.

The resulting posture can be further improved in accuracy and naturalness by incorporating

constraints subject to the physiological model of the hand, taking into account the hand,

fingers, muscle, skin and individual joint properties.
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Table 5.1.: Hand joint configuration

DoF Rotational-x Rotational-y Orientational
(degrees) (degrees)

θ1 θ3 θ2 θ4

Fi,1 i = 1, ..., 4 1 - - - - No twist
Fi,1 i = 5 2 20 20 30 40 No twist
Fi,2 i = 1, ..., 4 2 10 85 15 15 No twist
Fi,2 i = 5 2 5 30 10 10 No twist
Fi,3 i = 1, ..., 5 1 10 95 - - No twist
Fi,4 i = 1, ..., 4 1 10 90 - - No twist

Total 25

 2  4  1  3

Figure 5.6.: Graphical representation of the angles θ1, ..., θ4 which define the rotational constraints
of each joint.

5.5. Physiological Constraints

In addition to the basic rotational and orientational joint constraints, presented in [AL10b], it

is important to incorporate motion limitations based on the model properties. Kaimakis and

Lasenby, in [KL09], proposed a physiological model to restrict the hand poses according to the

hand anatomy. That was the first paper which utilised physiological constraints taking into

account the hand, finger and joint properties. In this study, the physiological hand constraints

are defined using the same terminology as in [KL09], and each of these is outlined below in

the order in which they appear in [KL09].

5.5.1. Inertia

The first physiological constraint discussed in [KL09] is inertia, a limitation correlated with

the dynamics of the articulated structure. For implementation, it is assumed that all moving

parts of the hand skeleton have similar velocity and acceleration at different time periods.

Obviously, the kinematic movement can be divided into two classes, the spatial velocity of the

hand’s root giving the translation of the hand, and the local angular velocity of each bone.

The problem of inertia, in this study, is considered as solved since the marker positions

are tracked by the optical motion capture system; however, this information can be useful in

predicting the missing marker positions when the latter are occluded by elements of the scene.

When the hand moves, the finger with the missing marker will have similar direction, velocity

and acceleration to that of the hand. Thus, a better approximation of the filtering observation

state can be achieved.
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(a) (b)

Figure 5.7.: Examples of unnatural hand postures due to violation of the (a) flexion and abduction,
(b) rigidity properties of the finger.

5.5.2. Flexion

The design and physical restrictions of the human hand mean that fingers can move to the

ventral side, but cannot move in any other direction. The movements that a hand can undergo

are therefore restricted in terms of flexion and extension.

5.5.3. Abduction

Another family of limitations, caused by hand physiology, are the abduction and adduction

constraints. These constraints control and limit the amount of sideways motion. In this study

it is assumed that finger orientation is highly correlated with that of the hand palm.

The hands posture constraints, related to flexion and abduction, can be incorporated directly

into FABRIK as rotational and orientational constraints, in the same way as described in

section 3.4.1. For instance, a bone rotation can be limited by factorising it into two rotations:

one “simple rotation” that moves the bone to its final direction vector and one that represents

the twist around that final vector. The hand model studied here consists of 25 joints and has

in total 25 DoFs. Table 5.1 lists the degrees of freedom for each joint as well as its rotational

and orientational limits. Figure 5.6 presents the angles θ1, ..., θ4 which define the rotational

limits of each joint Fi,j . Fingers do not twist, thus only rotational constraints are applied,

locking the joint orientation to be identical to that of the palm (apart from the thumb).

FABRIK easily supports rotational and orientational constraints; the main idea is the re-

positioning and re-orientation of the target to be within an allowed range bound. This can

be accomplished by checking whether the target is within the valid bounds, at each step of

FABRIK, and if it is not, to guarantee that it will be moved accordingly. The allowed range of

motion is defined by the angles θ1, ..., θ4, which represent the minimum and maximum allowed
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(a) (b)

Figure 5.8.: An example showing the intradigital correlation feature. (a) The intradigital correlation
constraint is violated; even if the rotational and orientational constraints are satisfied, the posture of the
hand is not natural since it is impossible to bend the distal phalanges without flexing the intermediate
and proximal phalanges, (b) the correct posture of the hand when the intradigital correlation of the
finger has been taken into account.

rotation of each joint about the x and y-axes, respectively. More information on how FABRIK

works, how joint limitations can be incorporated and how it can be extended to problems with

multiple end effectors and targets, can be found in chapter 3 and [AL10d].

Figure 5.7(a) shows an example where the flexion and abduction constraints are not satisfied;

the forefinger was erroneously rotated where the little finger was bent in an inappropriate

direction and angle.

5.5.4. Intradigital correlation

As well as the limitations due to inertia, flexion and abduction, several posture restrictions are

caused by the muscles of the hand. For instance, the phalangeal flexion in particular fingers is

influenced by tendinous synapses with more than one phalanx of that finger. Therefore, it is

clear that the muscle contraction and phalangeal flexion are not fully independent, but there

is an inter-connection between them. [KL09] introduced the intradigital correlation constraint

that is responsible for the inter-finger connections caused by certain tendons. In order to

cope with these motion restrictions, we add an extra step; after the completion of the IK

operation, a check mechanism is activated to identify whether the finger has a natural posture.

If a violation of the transdigital correlation constraint is detected, the IK solver is repeated

but this time with rotational constraints being applied to ensure that the flexion is uniformly

distributed to all finger joints. However, in order to apply this constraint, the joint angles must

be calculated, resulting in an increase in computational cost. Figure 5.8 shows an example

where the intradigital correlation constraint is not satisfied; an unnatural pose of the hand is

produced, even if the rotational and orientational constraints for individual joints are satisfied.
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Figure 5.9.: The linked pairs of bones which share a transdigital correlation movement. (a) the
little finger and the affected neighbouring fingers, (b), (c) and (d) the ring, middle and index fingers,
respectively, with the effect of their flexion on the neighbouring fingers, (e) the thumb. The thumb’s
movement is independent of the other fingers since it is directly connected to the trapezium. The moving
fingers are highlighted in blue, the highly correlated fingers in red, the fingers having low correlation to
the moving finger in green and finally, the fingers with no correlation are coloured in light gray.

5.5.5. Transdigital correlation

Beyond the fingers’ intradigital correlation constraint discussed in 5.5.4, the fingers also share

transdigital correlations. In particular, [KL09] argues that certain ligaments and muscles in-

teract to cause an amount of flexion to be transmitted across neighbouring fingers, as shown

in figure 5.9. An exception to the transdigital correlation is the thumb, which moves indepen-

dently of other fingers since it is directly connected to the trapezium. Figure 5.9 indicates the

linked pairs of bones which share a correlation movement, subject to transdigital correlation.

An example showing violation of the transdigital correlation is given in figure 5.10(a) where

even if both individual rotational and orientational constraints are satisfied, the resulting hand

posture remains abnormal. Figure 5.10(b) shows the physiologically correct hand configuration

for this specific pose.

The transdigital correlation constraint is assumed to be solved by the optical motion capture

system, since each finger is tracked individually by labelled markers. However, this information
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(a) (b)

Figure 5.10.: An example explaining the transdigital correlation of the hand. (a) the finger flexes
without affecting its neighbouring fingers, breaching the transdigital correlation feature and producing
an unnatural posture, (b) a realistic hand pose after taking into account the transdigital correlation
between neighbouring fingers.

finds applications in cases where the marker position is missing due to occlusions by elements

of the scene, thus contributing to better estimates of the observation vectors.

5.5.6. Friction

Finally, [KL09] introduces friction, a hand property associated with the nature of the skin that

restricts hand movements. For instance, when frictional forces are applied to a finger, they

cause motion that is transmitted to other fingers. A clear example of the friction feature is

given during the formation of the fist. Since, in this work, each finger position is tracked using

a mocap system, this feature finds application only during the marker prediction algorithm

returning better estimates of the missing marker positions.

5.6. Missing Marker Prediction

During motion capture, we encountered cases where markers were occluded or just not visible

to the cameras. That is a common problem in optical motion capture since markers are self-

occluded or occluded by other fingers or elements in the capture environment. To cope with

the missing marker problem, a marker prediction mechanism is employed using a VTM-UKF

model, similar to the one described in chapter 4 and [AL10c], where the observation vector is

constrained subject to inferred information from the hand geometry and the available marker

positions. Physiological hand constraints have been incorporated within the filter to give good

estimates of possible positions of the observation state at each time period, such as those

described in section 5.5. The VTM-UKF filter can also handle the negative effects of the
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(a) (b)

Figure 5.11.: (a) The true hand pose, (b) the markers as seen from the motion capture system.

marker data noise.

5.7. Experimental Results

Experiments were carried out using a 10 camera PhaseSpace motion capture system, capturing

data at 100Hz [Pha]. The implemented methodology was able to process up to 70 frames per

second. Runtimes were measured with custom MATLAB [MAT] code on a Pentium 2 Duo

2.2GHz. Our dataset comprises marker motion capture data. Data captured using colour

video cameras are also used to compare the reconstruction quality between the estimated

and the true hand postures. The reconstructed hand postures were visualised using a mesh

deformation algorithm. Figure 5.11 shows an example of the hand with attached markers and

how the markers are seen from the motion capture system.

5.7.1. Mesh deformation

A mesh deformation algorithm is employed to visualise the movements of the underlying hand

skeleton in order to compare the resulting animations with the true hand poses. Animating

an articulated 3D character requires manual rigging to specify its internal skeletal structure

and to define how the input motion deforms its surface. [BP07] and [WL08] proposed mesh

deformation algorithms driven by animation of an underlying skeleton, named bone-heat and

bone-glow respectively. The articulated hand is automatically assigned a per-vertex and per-

bone weighting given only by an underlying skeleton. In this work, we used the version of

bone-heat implemented in Blender [Ble].

Figure 5.12 provides a representative illustration of implementing the mesh deformation

algorithm; the mesh and armature representing the hand is automatically associated using the

bone-heat algorithm.

5.7.2. Analysis of results

The proposed method is simple and has low computational cost, meaning it is real-time imple-

mentable. It requires 1.43msec per frame for tracking and fitting 25 joints, hence processing



5.7 Experimental Results 127

Figure 5.12.: Example of simple linear blend skinning scheme applied using the weights from bone-
heat. The weight assigned to each vertex has been indicated using a gradation from blue to red to
indicate the range [0, 1].

Table 5.2.: Average time needed at different frame rates.

Time per frame Frames per
(msec) second

Frame rate at 100Hz 1.4311 69.8
Frame rate at 10Hz 1.6251 61.5
Frame rate at 3Hz 2.2287 44.8

on average 70 frames per second when the data frame rate is high, and more than 40 frames

per second for a low frame rate dataset. The rotational and orientational constraints ensure

that each finger movement remains normal without showing asymmetries, or irregular bends

and rotations. In addition, the physiological constraints restrict the results to anatomically

correct postures, subject to the hand, muscle and skin properties.

The implemented system can smoothly track the hand movements, resulting in visually

natural motion without abnormalities, oscillations and discontinuities. The reconstruction

quality can be checked visually by comparing the generated 3D hand animations with the data

captured using a colour video camera, as seen in figure 5.13; our system is precise, producing

postures which meet the hand’s physiological model restrictions and are very close to the true

hand poses. Figure 5.14 shows an example of continuous hand pose tracking and reconstruction

using a dataset captured at a frame rate of 10Hz. In this example, the hand flexes to its ventral

side, to form a fist. It is difficult to illustrate the reconstruction quality in still images, but the

resulting motion does not suffer from oscillation or discontinuities and each finger smoothly

moves to the target.

We also investigate the performance of the system under different frame rates; clearly, the

reconstruction quality is better when the frame rate becomes higher. However, even at a

low frame rate (3 frames per second) the reconstruction quality of our methodology remains
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(a) (b) (c) (d)

Figure 5.13.: An example of hand reconstruction using our methodology at a frame rate of 100Hz
frame. (a) View of the hand from RGB camera 1, (b) a different view of the hand from RGB camera
2, (c) the reconstructed skeleton and (d) the final visualised posture. The resulting poses are visually
natural and biomechanically correct.

sufficient, delivering smooth and visually natural results. The time needed for the IK solver to

fit the joints to the model also varies for data captured at different frame rates; by reducing

the frame rate, the distance between the target and end effectors is increased, thus more

computational time is required from FABRIK to track the target positions. Table 5.2 lists the

average time needed per frame to track the hand at different frame rates.

Despite the apparent accuracy in performance, the resulting postures of our approach are not

unique; several possible poses could result from the 3D articulated hand tracking. However, the

advantages of this method are its efficiency and ability to return natural and feasible motion,

which meets the user constraints, with low computational cost. It is also important to note

here that FABRIK results in poses which are closely related to previous states. Therefore,

the final joint configuration might be different when the IK problem is solved with the end

effectors in different initial positions but with similar final states. Nevertheless, these differences

are minimal causing only a small decrease in performance. A video showing examples of

implementation using different frame rates is included in the supplementary materials.
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Figure 5.14.: An example of continuous hand pose tracking, at a frame rate of 10Hz; in this example
the hand flexes to its ventral side to form a fist.

5.8. Conclusions and Future Work

In this chapter we have presented a system that can track a human hand of 25 DoFs relying on

optical motion capture data; one labelled optical marker is attached on each finger, treated as

end effectors, and 3 more markers are placed at strategic positions on the hand reverse-palm

to help us identify the root and orientation of the hand. Physiological constraints relevant

to the hand model, skin and muscle properties are incorporated, ensuring that the resulting

movements remain within a feasible set. FABRIK, a real-time inverse kinematics solver, is

employed to fit the remaining joint positions subject to the proposed physiological restrictions.

The problem of missing data, due to marker occlusions, is solved using a marker prediction

methodology similar to the one presented in chapter 4, recovering the missing positions in

real-time. Finally, bone-heat, a mesh deformation algorithm, is used to visualise the results

for evaluation and comparison.

The proposed methodology produces smooth and natural hand postures over time; the

required processing time remains low enabling an effective real-time hand motion tracking and

reconstruction system. The results are precise, producing visually natural and biomechanically

correct movements. The system can process up to 70 frames per second; even with a low capture

frame rate, the proposed methodology tracks the hand motion smoothly, without oscillations

or discontinuities and with high reconstruction quality.

In future work, a more sophisticated model will be implemented which takes into considera-

tion, in addition to the joint rotational and orientational restrictions, skin related constraints

and constraints related to the rigidity of the hand model. The rigidity feature of the hand

was not investigated in this work since the data was captured from a markered optical motion

capture system and the 3D animated hand does not automatically have a mesh that defines its

external shape. As the hand is the most mobile part of the human body, we expect a consider-
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able degree of interaction between fingers, despite the limitations already discussed. Rigidity

concerns such interactions, where different fingers may self-intersect, thus causing unnatural

postures. While some of the constraints already discussed will limit such self-intersections,

there are instances where extra movement restrictions must be applied. This problem is also

known as self-collision and has been tackled in several papers, such as [KL09] and [LG98].

Figure 5.7(b) shows an example where two fingers collide disproportionately; by taking into

account the rigidity of each finger, problems similar to hand collisions can be avoided.



6
Conclusions and Future Work

M otivated by the need to develop effective real-time inverse kinematics solutions, this

thesis intends to provide insights into existing computer vision techniques and presents

a novel iterative IK solver. Also, we investigate real-time marker prediction and centre of

rotation estimation techniques as well as a hand pose tracker for real-time visual interactions.

In this chapter, we summarise the findings from previous chapters, we describe the main

contributions of this thesis and we propose future directions and applications.

6.1. Contributions

CGA is a mathematical framework that offers a compact and geometrically intuitive formula-

tion of algorithms and an easy and immediate computation of rotors. Rotors are simpler to

manipulate than Euler angles and avoid the problem of gimbal lock1. It also simplifies the

mathematical model since basic entities, such as spheres, lines, planes and circles, are simply

represented by algebraic objects. Thus, CGA gives us the ability to describe algorithms

in a geometrically intuitive and compact manner, making it suitable for applications in

engineering, computer vision and robotics.

1Gimbal lock is a common problem associated with Euler angles and occurs because two axes become aligned
during rotational operations, producing unexpected behavior since one degree of freedom is lost.
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Forward And Backward Reaching Inverse Kinematics: Inverse Kinematics meth-

ods are used to control the postures of articulated bodies in frame animation production.

IK finds applications in several areas such as robotics, computer animation, ergonomics and

the computer games industry. However, most of the currently available methods suffer from

high computational cost and production of unrealistic poses. Chapter 3 presents a review of

algorithms related to the IK problem; it also introduces a novel iterative IK solver, named For-

ward And Backward Reaching Inverse Kinematics (FABRIK). Firstly, this chapter concerns

the articulated body model describing the human joint types, and gives a brief introduction

to human models and motion; it also considers the most popular numerical solutions to the

IK problems, such as the Jacobian family of methods (Pseudo-inverse, Transpose, DLS, SVD-

DLS, SDLS), the Newton family of methods (e.g. BFGS), methods that solve the IK problem

from a control prospective (FIK), sequential monte carlo methods and methods which learn

the space of meaningful shapes from example meshes. Heuristic iterative approaches, such as

CCD and its extension (IIK), as well as IK solvers that solve the IK problem in a sequential

fashion, are discussed. Lastly, the FABRIK algorithm is compared against the most popular IK

solvers and under several different conditions: (a) with and without manipulator constraints,

(b) with single and multiple end effectors, (c) tracking moving targets and (d) when the tar-

get has significant distance from the end effector. Several tests and comparisons have been

implemented between the IK algorithms regarding their computational cost, processing time,

conversion error, the number of iterations needed to reach the target as well as how visually

realistic the resulting postures are.

FABRIK is the first algorithm that uses an iterative method with points and lines to solve

the IK problem. Thus, no rotational angles or matrix calculations are needed. It divides

the problem into 2 phases, a forward and backward reaching approach, and it supports most

of the joint types by repositioning and re-orienting the target at each step. It does not

suffer from singularity problems, it is easy to implement and computationally efficient. No

pre-recorded motion database is necessary, thereby avoiding the need for extra memory. An

efficient approach of how joint constraints can be embedded to the FABRIK algorithm is also

illustrated, restricting the resulting poses to a naturally feasible set. FABRIK is able to solve

problems with closed loops and can be easily expanded to treat problems with multiple end

effectors, meaning that it is able to support complex models with multiple kinematic chains.

It is experimentally shown that FABRIK requires on average fewer iterations to reach the

target than any other IK method considered here, both with constrained and unconstrained

kinematic chains. It produces visually realistic postures, with and without constraints,

reaching the desired position with the lowest computational cost. It executes in real-time

and has the best performance on tracking a moving target and produces natural movements

without oscillations and discontinuities. The FABRIK algorithm can be applied to a variety of

problems, such as visual modelling, virtual creature animation, game consoles, rehabilitation

medicine etc. Some examples of FABRIK applications are demonstrated in chapters 4 and 5.
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Marker Prediction and Centre of Rotation Estimation: Chapter 4 includes algo-

rithms related to the problem of using marker-based optical motion capture data in order to

automatically establish a skeleton model to which the markers are attached. The experimen-

tal framework was described, including the cameras used for the experiments, the association

between the markers and the limbs, and how the marker data was clustered into groups corre-

sponding to the limb segments to which they were attached. We also investigated the problem

of fitting skeletal models to marker-based optical motion capture data. Using the well known

Procrustes formulation, we showed how to establish estimates of the relative orientation of a

limb in each frame relative to a reference frame. Thereafter, a method for real-time estima-

tion of the joint locations and identification of the optimal skeleton was implemented. That

method takes advantage of the approximation that all markers on a segment were attached to

a rigid body, acquiring the skeleton model from a stream of motion capture data. However, a

common issue for motion capture, even when multiple cameras are used, is marker occlusion

by elements of the scene, leading to missing data. In order to unambiguously establish the

marker position, each marker must be visible to at least two cameras in each frame. Section

4.5 introduces a prediction method which copes with such instances. An Unscented Kalman

Filter with a variable turn model has been deployed for marker tracking. Information on the

missing markers in the current frame were inferred from an approximate rigid body assump-

tion, which has been used for the observation states. With a continuous stream of accurate

3D data, we were able to perform real-time CoR estimation and produce skeletal information

for visual performance feedback. Without assuming any skeleton model, we took advantage of

the fact that, for markers on a given limb segment, the inter-marker distance is approximately

constant. Also, the proposed system uses information about the missing markers which are

visible to a single camera, reducing the marker position estimation error to a minimum. To the

best of our knowledge, this is the first time that such information has been used for real-time

marker prediction in optical motion capture.

The joint estimations were further improved by employing the FABRIK algorithm to ensure

that the inter-joint distances remain constant over time. FABRIK simply re-positions the

CoRs and guaranteeing that the bones lengths will not change during the marker prediction

period. This was done with an added computational cost of only 5.27%. Experiments

demonstrate that our methodology outperforms, in terms of accuracy, the methods used

for comparison and effectively recovers good estimates of the true positions of the missing

markers. It is able to maintain real-time marker predictions for extended time periods, even

in the presence of several marker occlusions, thus enabling good estimates of the CoR. The

method is reliable even if the limb rapidly changes direction and provides precise estimates of

the markers and CoR locations even on data with large sequences of missing markers. The

resulting motion is natural and smooth, without discontinuities or oscillations. This is the

first work which uses an IK methodology to restrict, in real-time, the inter-joint distances in

optical motion capture under marker occlusions.
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Hand Pose Tracker: Analytically and anatomically correct models are necessary to control

and constrain the movements of any legged body. Chapter 5 introduces a hand pose tracker

that requires a minimum number of available markers, one on each finger; the labelled markers’

positions are tracked using an optical motion capture system, such as [Pha]. The hand model

is highly constrained using a sophisticated physiology model, which takes into account not

only the joint rotational and orientational restrictions, but also constraints related to the hand

anatomy, such as self-collisions, inertia, flexion etc. This extension provides more accurate

results, ensuring that the hand adopts smoother and more natural poses. FABRIK was also

employed to fit the other joint positions and manipulate the finger movements. Physiological

constraints were used to ensure that the states of the articulated body conform to the data,

minimise the misfits and do not violate the hand shape. Finally, a mesh deformation algorithm

was applied to visualise the movements of the underlying hand skeleton and to compare the

resulting animations with the true hand poses. Our experimental results demonstrate high

precision and reliability in tracking, while also achieving real-time performance.

6.2. Publications

Several papers have been published based on the content of this thesis; these papers are

enumerated in inverse chronological order below:

Andreas Aristidou and Joan Lasenby, ”Real-Time Marker Prediction and CoR Estimation in Optical

Motion Capture”, Submitted to the Image and Vision Computing, February 2010.

Andreas Aristidou and Joan Lasenby, FABRIK: a fast, iterative solver for the Inverse Kinematics

problem, Submitted to Graphical Models, February 2010.

Andreas Aristidou and Joan Lasenby, Inverse Kinematics solutions using Conformal Geometric

Algebra, In Proceedings of the 4th conference on Applied Geometric Algebras in Computer Science

and Engineering (AGACSE’10), The Netherlands, June 14-16, 2010.

Andreas Aristidou and Joan Lasenby, Motion Capture with Constrained Inverse Kinematics for

Real-Time Hand Tracking, In IEEE Proceedings of the 4th International Symposium on Commu-

nications, Control and Signal Processing (ISCCSP’10), Cyprus, May 3-5, 2010.

Andreas Aristidou and Joan Lasenby, Inverse Kinematics: a review of existing techniques and intro-

duction of a new fast iterative solver, Technical Report, CUEDF-INFENG, TR-632, Cambridge,

September 2009.

Andreas Aristidou, Joan Lasenby and Jonathan Cameron, Methods for Real-time Restoration and

Estimation in Optical Motion Capture, Technical Report, CUEDF-INFENG, TR-619, Cambridge,

January 2009.

Andreas Aristidou, Jonathan Cameron and Joan Lasenby, Predicting Missing Markers to Drive

Real-Time Centre of Rotation Estimation, In Proceedings of the 5th International Conference on

Articulated Motion and Deformable Objects, AMDO’08, pages 239-247, Spain, July 9-11, 2008.

Andreas Aristidou, Jonathan Cameron and Joan Lasenby, Real-Time Estimation of Missing Markers

in Human Motion Capture, In IEEE Proceedings of the 2nd International Conference on Bioin-

formatics and Biomedical Engineering, iCBBE’08, pages 1343-1346, China, May 16-18, 2008.
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6.3. Future Directions

Forward and Backward Reaching Inverse Kinematics: Future work will see the intro-

duction of FABRIK within a larger variety of analytically and anatomically correct models.

A further study of the collision problem, with simultaneous study of more sophisticated joint

types, is also essential for the production of smoother and more natural movements. FABRIK

could also find applications in markerless motion capture, e.g. problems with silhouette data,

to solve the data-fitting optimisation problem.

Marker prediction and CoR estimation: The marker prediction and CoR accuracy could

be further improved by incorporating biomechanical constraints to control the postures of ani-

mated characters, in optical motion capture under marker occlusion; however, prior knowledge

of the model and joints is needed, reducing its generality to specific models. In addition, a

hybrid system with low cost inertial measurement units could be employed allowing extra val-

idation of the data.

Hand pose tracker: A hand model which takes into consideration constraints relevant to

the skin properties and the hand’s rigidity will be studied. The data in this thesis is captured

from an optical motion capture system, thus there is no mesh to define the hand’s shape; the

mesh presented in the examples was driven by the underlying skeleton using bone-heat, a mesh

deformation algorithm. Problems relevant to the mobility of the hand, such as self-collisions,

were not investigated.
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A
Trigonometric solutions using

Geometric Algebra

A ppendix A illustrates the CGA mathematical solutions described in this thesis. Most

of these CGA solutions are applied to the marker constraint problem, as discussed in

chapter 4.6. An alternative implementation of the FABRIK algorithm using CGA is also

presented.

A.1. Nearest Point on a Circle from a Point in Space

This section considers the problem of constraining the estimated marker positions to give a

better approximation of the observation vector used in the UKF filter (section 4.5.2). Using

information from the rigid body, and also keeping in mind the fact that markers have a constant

distance between each other, we can find estimates of the non-visible marker. The observation

vector describing the occluded marker m1 in frame k, x̂k
1, can be assigned as the shortest

distance between the intersection of the two spheres with centre the positions of the markers

m2 andm3, radii the distances D12 and D13, and the point in space, x̃k
1. The solution presented

here is solved using Conformal Geometric Algebra (CGA, see [LLW04]) as shown in the next

paragraphs. The intersection of 2 spheres is discussed in section 2.2.6. The distance from the

point x̃k
1 (which can be considered as any point in space) to x̂k

1 can be solved as the problem

of finding the nearest point on a circle to a point in space.
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Figure A.1.: The nearest point on circle to point in space. The point X is projected on the circle’s
plane Φ. A line is then formed through the midpoint of X and its projected counterpart and the centre
of the circle. The intersection between the line and the circle returns two possible solutions, the one
that is shorter to the point X is chosen.

The minimum distance on a circle from a point in space is related to the projection of

that point onto the plane Φ of the circle. This can be achieved by reflecting the point in the

plane and finding the mid-point of the reflected and the original point. Hence, let the circle

C = H(b) ∧H(c) ∧H(d), where b, c and d are points that lie on the circle and the operation

of H(x) is the Hestenes’ mapping in 2.2. The centre c of the circle C can be calculated as,

c = CnC (A.1)

and the plane Φ of the circle can be formulated as:

Φ = C ∧ n = ⟨Cn⟩4 (A.2)

Having the plane Φ and the point X = H(x) in space, the nearest point on circle can be

found by reflecting that point in the plane Φ.

X ′ = ΦXΦ (A.3)

The mid-point XP is then calculated as:

X ′P = XP + αn = H

(
1

2

(
H−1

(
X ′)+ x

))
(A.4)

Then, a line, L, is formed through this midpoint and the centre of the circle,

L = XP ∧ c ∧ n (A.5)

The intersection between line L and circle C will return a bivector, A ∧ B, which represents

the shortest and longest distances on the circle from the point in space. The vectors X1 and

X2 can be extracted from X1 ∧X2 using projectors (see equation 2.65). The nearest point is

then selected using a simple distance comparison method. This method is also illustrated in
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figure A.1.

(X1, X2) = L ∨ C

X = arg (max (X1 ·X,X2 ·X)) (A.6)

A.2. Nearest Point on a Line from a Circle

Section A.2 considers the problem of finding the nearest point on a line from a circle in order

to obtain a better estimate of the missing marker position. In section 4.6.2 we presented

an efficient model for estimating the missing marker on a limb segment, in the case where 2

markers are visible on the same limb segment. Also, in section 4.6.5 we talked about instances

where missing markers are visible in a single camera. This information identifies a line, L1,

starting from the camera and passing through the position of the missing marker. Here we

present an alternative way of estimating the missing marker which is visible to one camera,

by finding the nearest point on line L1 from circle C1. Circle C1 is the circle created after the

intersection of the spheres Σ1 and Σ2, as described in section 4.6.2.

Consider a line L1 passing through the points a and b, which are represented in CGA as:

A =
1

2

(
a2n+ 2a− n̄

)
(A.7)

B =
1

2

(
b2n+ 2b− n̄

)
(A.8)

Line L1 will then be equal to:

L1 = A ∧B ∧ n = ⟨⟨AB⟩2 n⟩3 (A.9)

Assume that circle C1 lies on the plane Φ. Line L1 intersects with the plane Φ, otherwise

L1 and Φ are parallel. Thus, the bivector B is given by

B = Φ ∨ L1 = [⟨ΦL1⟩3]
∗ = ⟨ΦL1⟩3 I (A.10)

If B2 > 0, then L1 intersects with plane Φ, while if B2 = 0, then L1 and plane Φ are parallel.

Firstly, consider the case where line L1 and plane Φ intersect. In such a case the bivector B

will be equal to B = P ∧ n or B = n ∧ P . The vector P can be extracted from bivector B

as discussed in section 2.2.5. Thereafter, we need to find the projection of the centre of the

circle, C = H (c), on line L1. This is achieved by reflecting the centre of the circle in the line

and then finding the mid-point, E, of point C and its reflection C ′.

C ′ = L1CL1 (A.11)

E = H

(
1

2

(
H−1

(
C ′)+H−1 (C)

))
(A.12)

We then need to find the point Y which is the projection of point E onto the plane Φ. A
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Figure A.2.: Finding the nearest point on a line from a circle using CGA. Case where the distance
from the centre of the circle C1 to the point Y is smaller than the radius of the circle and point P is
inside the circle area.

similar procedure as above is used;

E′ = ΦEΦ (A.13)

Y = H

(
1

2

(
H−1

(
E′)+H−1 (E)

))
(A.14)

After finding the point Y , the algorithm can be separated into three possible subcases:

• If the distance from the centre of the circle, C, to the point Y , is smaller than the radius

of the circle, then a line L2 = P ∧ Y ∧ n will be established. The intersection of line L2

with the circle C1 will return 2 points, x1 and x2, i.e. those points on the circle with the

shortest and longest distances from point P . The selection of the appropriate point can

be achieved using a simple distance comparison.

(x1, x2) = L2 ∨ C = [⟨L2C⟩4]
∗ (A.15)

X = arg (max (X1 · P,X2 · P )) (A.16)

where X1 and X2 are the CGA representations of x1 and x2 respectively.

Assume that the point with the shortest distance from P is point x1. Obviously, the

point on L1 which is closest to x1 is the projection of that point onto the line. Hence,

the point we are looking for, xn, is equal to:

X ′
1 = L1X1L1 (A.17)

xn = H

(
1

2

(
H−1

(
X ′

1

)
+H−1 (X1)

))
(A.18)

Figures A.2 and A.3 illustrate the above. Point xn is given in red.

However, there are some extreme instances to be considered:

– In the case where point P and Y are identical (Line L1 is perpendicular to plane

Φ), then L2 = C ∧ Y ∧ n. The rest of the algorithm remains the same.

– In the case where line L1 passes through the centre of the circle, line L2 cannot be

established using the above procedure. Hence, we consider line L2 as the projection
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Figure A.3.: Finding the nearest point on a line from a circle using CGA. Case where the distance
from the centre of the circle C1 to the point Y is smaller than the radius of the circle and point P is
outside the circle area.

of line L1 onto the plane Φ. The rest of the algorithm remains the same.

– In the case where line L1 is perpendicular to plane Φ and also passes through the

centre of the circle, then any point on circle C1 has the same distance from line L1.

• If the distance from the centre of the circle, C, to the point Y , is equal to the radius of

the circle, then x1 = Y . In such a case, the point on line we are looking for, xn can be

achieved by projecting the point x1 onto the line L1 as above.

• If the distance from the centre of the circle, C, to the point Y is greater than the radius

of the circle, then a line L2 will be introduced which is equal to L2 = C ∧ Y ∧ n. Hence,

we have a similar situation as above but line L2 is different. Again, the intersection of

line L2 with the circle C1 will return 2 points, x1 and x2, and the appropriate point

can be selected as the point with the shortest distance from point P . Thus, point xn is

related to the projection of point x1 onto line L1. Figure A.4 illustrates the above.

In the second case, where B2 = 0, plane Φ and line L1 are parallel. We can check if the

circle and the line intersect by calculating the meet between them.

G = C ∨ L1 = [⟨CL1⟩4]
∗ = ⟨CL1⟩4 I (A.19)

There are three further possible subcases:

• If G = 0 then line L1 belongs to plane Φ and intersects with the circle at two points. In

such a case we can extract the two points as in section 2.2.5. Both points are on line L1

and on circle C.

• If G = X and X2 = 0 then line L1 lies in the plane Φ and intersects with the circle at

one point. That is the point we are looking for.

• If G = X and X2 ̸= 0 then line L1 and circle do not intersect at any point. This case

can be further separated in two subcases; the instance where line L1 lies in the plane Φ

and the instance where it does not.

– In the case where line L1 lies in the plane Φ, then the nearest point on the line from

the circle can be achieved by finding the projection of the centre of the circle onto

the line.
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Figure A.4.: Finding the nearest point on a line from a circle using CGA. Case where the distance
from the centre of the circle C1 to the point Y is greater than the radius of the circle and point P .

– In the case where line L1 does not lie in the plane Φ, then the problem can be solved

by finding the projection of line L1 onto the plane Φ. Hence, we can continue as

above, having a line on plane Φ.

A.3. Nearest Point on a Line from a Sphere

This section focuses on the problem of finding the nearest point on a line from a sphere. In

section 4.6.3, an efficient model for estimating missing markers has been proposed for the case

where 2 markers on a limb segment are occluded. However, there are instances where the

missing marker is visible in a single camera, giving us more information about the position

of this missing marker. This information identifies a line, L1, starting from the camera and

passing through the position of the missing marker. Section 4.6.5 presents a reliable approach

of estimating the missing markers for such instances. Here we discus an alternative way of

estimating the occluded marker, which is visible to one camera, by finding the nearest point on

line L1 from sphere Σ1. Σ1 has as its centre the position of the visible marker m2 and radius

the distance |D̂k
j,2|, as calculated in section 4.6.3.

Consider a line L1 passing through the points a and b, which are represented in CGA as:

A =
1

2

(
a2n+ 2a− n̄

)
(A.20)

B =
1

2

(
b2n+ 2b− n̄

)
(A.21)

Line L1 is then:

L1 = A ∧B ∧ n = ⟨⟨AB⟩2 n⟩3 (A.22)

We now need to find the projection of the centre of the sphere, C, onto line L1. This can

be achieved by reflecting the centre of the circle in the line and then finding the mid-point, Y ,
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between the original, C, and the reflected point C ′.

C ′ = L1CL1 (A.23)

Y = H

(
1

2

(
H−1

(
C ′)+H−1 (C)

))
(A.24)

The problem can now be separated into three possible subcases; the case where line L1

intersects the sphere at two points, the case where line L1 touches the sphere and the case

where the line L1 and the sphere have no intersection points. The solutions for all cases is

given below:

• If the distance between the centre of the sphere and the point Y is greater than the

radius of the sphere, then line L1 does not intersect with sphere Σ1. Hence, Y represents

the point on line we are looking for.

• If the distance between the centre of the sphere and the point Y is equal to the radius

of the sphere, then line L1 intersect with sphere Σ1 at exactly one point, the point Y .

Obviously, Y represents the point on the line with minimum distance from the sphere.

• If the distance between the centre of the sphere and the point Y is smaller than the radius

of the sphere, then line L1 intersect with sphere Σ1 at two points. Both points could

represent the point we are looking for. However, we select as the position of the missing

marker the point which returns minimum distance from the position in the previous

frame.

A.4. Nearest Point on a Sphere from a Point in Space

This section presents how to calculate the nearest point on a sphere from a point in space

using CGA. Assume that a sphere has centre c and radius ρ. The sphere Σ1 can be expressed

as blades in CGA as follows:

Σ1 =

(
c− 1

2
ρ2n

)
I

where

c =
1

2
c2n+ c− n̄

2

Assume a point in space q. In order to find the nearest point on the sphere from that point,

we need to find the intersection of the line L1, that passes through the point q and the sphere

centre c. Thus,

L1 = Q ∧ c ∧ n = ⟨⟨Qc⟩2 n⟩3 (A.25)

where Q = H(q) is the Hestens mapping of q. The intersection between the line L1 and the
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sphere Σ1 always returns two possible solutions, which are given by the bivector, A ∧B.

A ∧B = L1 ∨ Σ1 (A.26)

Finally, the vectors A and B can be extracted from A ∧ B using equations 2.65. Then, the

nearest point on the sphere is assigned as the point that returns the minimum distance from

the point in space.

A.5. IK Solutions using Conformal Geometric Algebra

In general, CGA gives us the ability to describe algorithms in a geometrically intuitive and

compact manner; it simplifies the mathematical model of the inverse kinematics solver, since

basic entities, such as spheres, lines, planes and circles, are simply represented by algebraic

objects. It is worth noting that FABRIK performs three times faster when it is implemented

by simply taking distances along lines rather than intersecting with spheres, as described in

chapter 3.3. However, when we wish to incorporate constraints, we often need the sphere-line

information, so in this appendix we present the entire work in this unified framework. In

addition, several optimisations can be applied using CGA; for instance, a direct estimation

of a missing joint, when it is between 2 true positions, can be achieved by intersecting the 2

spheres rather than finding an approximation using the normal iterative algorithm. Another

simple optimisation is the direct construction of a line pointing towards the target, when the

latter is unreachable. The FABRIK algorithm is still real-time implementable and is described

in pseudocode in Alg. 5. The FABRIK solution in CGA was also presented in [AL10a].

The implementation of FABRIK in CGA is similar to the normal algorithm. Thus, assume

that p1, ...,pn are the joint positions of a manipulator. For the simple case where only a

single end effector exists, take p1 as the root joint and pn as the end effector. The target is

symbolised as t and the initial base position by b. First calculate the distances between each

joint di = |pi+1 − pi|, for i = 1, ..., n−1. Then, to check whether the target is reachable or not,

find the distance between the root and the target, dist, and if this distance is smaller than the

total sum of all the inter-joint distances, dist <
∑n−1

1 di, the target is within reach, otherwise,

it is unreachable. If the target is within reach, a full iteration is constituted by two stages.

In the first stage, the algorithm estimates each joint position starting from the end-effector,

pn, moving inwards to the manipulator base, p1. So, let the new position of the end-effector

be the target position, p′
n = t. The new position of the (n − 1)th joint, p′

n−1, is assigned as

the nearest point on the sphere Σn−1, with centre the joint position p′
n and radii the distance

dn−1, from the joint position pn−1. Similarly, the new position of the (n− 2)th joint, p′
n−2, is

selected as the nearest point on sphere Σn−2, with centre the joint position p′
n−1 and radii the

distance dn−2, from the joint pn−2. The algorithm continues until all new joint positions are

calculated, including the root, p′
1. The trigonometric solution of the nearest point on a sphere

from a point in space in given in section A.4.

A full iteration is completed when the same procedure is repeated but this time starting
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Algorithm 5: A full iteration of the FABRIK algorithm using CGA.
Input: The joint positions pi for i = 1, ..., n., the target position t and the distances between each

joint di = |pi+1 − pi| for i = 1, ..., n− 1.
Output: The new joint positions pi for i = 1, ..., n.

5.1 % The distance between root and target
5.2 dist = |p1 − t|
5.3 % Check whether the target is within reach
5.4 if dist > d1 + d2 + ...+ dn−1 then
5.5 % The target is unreachable
5.6 for i = 1, ..., n− 1 do
5.7 % Find the nearest point on sphere, with centre the joint position pi and radius the distance

di, from a point is space, t
5.8 pi+1 = NearestPointSphere(pi,di,t);

5.9 end

5.10 else
5.11 % The target is reachable; thus, set as b the initial position of the joint p1

5.12 b = p1

5.13 % Check whether the distance between the end effector pn and the target t is greater than a
tolerance.

5.14 difA = |pn − t|
5.15 while difA > tol do
5.16 % STAGE 1: FORWARD REACHING
5.17 % Set the end effector pn as target t
5.18 pn = t
5.19 for i = n− 1, ..., 1 do
5.20 % Find the nearest point on sphere, with centre the joint position pi+1 and radius the

distance di, from a point is space, pi

5.21 pi = NearestPointSphere(pi+1,di,pi);

5.22 end
5.23 % STAGE 2: BACKWARD REACHING
5.24 % Set the root p1 its initial position.
5.25 p1 = b
5.26 for i = 1, ..., n− 1 do
5.27 % Find the nearest point on sphere, with centre the joint position pi and radius the

distance di, from a point is space, pi+1

5.28 pi = NearestPointSphere(pi,di,pi+1);

5.29 end
5.30 difA = |pn − t|
5.31 end

5.32 end
5.33

5.34 % Where the function NearestPointSphere(X,Y ,Z), finds the nearest point on a sphere from a
point in space. X is the sphere’s centre, Y is the sphere’s radii and Z is the point in space.

from the root joint and moving outwards to the end effector. Thus, let the new position for

the 1st joint, p′′
1, be its initial position b. Then, the new joint position p′′

2 is assigned as the

nearest point on the sphere Σ1, with centre the p′′
1 and radii the distance d1, from the joint p′

2.

This procedure is repeated for all the remaining joints, including the end effector. FABRIK is

illustrated in pseudo-code in Algorithm 5 and a graphical representation of a full iteration of

the algorithm is demonstrated in figure A.5.

The forward and backward procedure is then repeated, for as many iterations as needed,

until the end effector is identical or close enough (to be defined) to the desired target. Finally,

the CGA framework offers several algorithm optimisations such as for cases where the ‘end

effectors’ are not positioned at the end of the chains (i.e. it is a leaf). For instance, assume
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Figure A.5.: A full iteration of FABRIK for the case of a single target and 4 joints using CGA.
(a) The initial position of the manipulator and the target, (b) move the end effector p4 to the target,
(c) find the joint p′

3 which is the intersection of the sphere Σ3 and the line l3 which passes through
the points p′

4 and p3, (d) continue the algorithm for the rest of the joints, (e) the second stage of the
algorithm: move the root joint p′

1 to its initial position, (f) repeat the same procedure but this time
start from the base and move outwards to the end effector. The algorithm is repeated until the position
of the end effector reaches the target or gets sufficiently close.

that the joint positions pi and pi−2 are known, and that we want to estimate the joint position

pi−1. This can be done by finding the intersection of the spheres Σ1 and Σ2 (as is described

in section 2.2.6) with centres the known joint positions pi and pi−2 and radii the distances

di = |pi − pi−1| and di−2 = |pi−2 − pi−1|, respectively. If the intersection is a circle, then the

estimated joint position can be assigned as the nearest point on that circle from its previous

position (as described in section A.1). If the intersection is a single point, the estimated

joint position is assumed to be that point, otherwise, if the two spheres do not intersect, the

estimated joint position is equal to pi−1 =
pi+pi−2

2 . Another simple optimisation is the direct

construction of a line pointing towards the target, when the latter is unreachable. In that case,

each joint pi is assigned to be the nearest point on the sphere, with centre the previous joint

pi−1 and radii the distance di−1, from the target.



Glossary

BFGS - Broyden, Fletcher, Goldfarb, Shanno method

CCD - Cyclic Coordinate Descent

CDF - Cumulative Distribution Function

CGA - Conformal Geometric Algebra

CoR - Centre of Rotation

CRBM - Conditional Restricted Boltzmann Machine

CV - Constant Velocity

DLS - Damped Least Squares

DoF - Degrees of Freedom

EKF - Extended Kalman Filter

FABRIK - Forward And Backward Reaching Inverse Kinematics

FIK - Feedback Inverse Kinematics

FK - Forward Kinematics

FTL - Follow The Leader

GA - Geometric Algebra

GPDM - Gaussian process dynamical model

GPLVM - Gaussian Process Latent Variable Model

HCI - Human Computer Interaction

HMM - Hidden Markov Model

IIK - Inductive Inverse Kinematics

IK - Inverse Kinematics

KF - Kalman Filter

LDS - Linear Dynamical System

MMSE - Minimum Mean Square Error

Mocap - Motion Capture

NBP - Nonparametric Belief Propagation

NCT - Nearly Constant Turn

PCA - Principal Component Analysis

SDLS - Selectively Damped Least Squares
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SIK - Sequential Inverse Kinematics

SMCM - Sequential Monte Carlo Methods

SVD - Singular Value Decomposition

VTM - Variable Turn Model

UKF - Unscented Kalman Filter

UPM - Uniform Posture Map



Supplementary Materials

A DVD containing supplementary materials accompanies this thesis. The DVD includes

videos demonstrating our algorithms and comparing their performance against other state of

the art methods. In addition, the Kine application (see section 3.6.1) is included, offering the

opportunity to interact and evaluate the results obtained in this work.

The supplementary materials included in the DVD are:

1. FABRIK.avi A video that demonstrates FABRIK and compares its performance

against other methods and under different scenarios.

2. MarkerPrediction.avi A video presenting experimental examples of our marker pre-

diction and CoR methodology, with and without incorporating FABRIK for length con-

straints. It also compares its performance against other methods, such as a simple EKF

model, interpolation and extrapolation.

3. HandPoseTracker.avi A video showing examples of our hand pose tracker under

different frame rates.

4. The Kine Application Kine is a 2D real-time gaming application which offers to the

user the opportunity to interact and evaluate the performance of the FABRIK algorithm

against CCD. There is also an option where the user clicks and drags on the screen, and

the snake (the kinematic chain is drawn as a snake) will track the mouse.
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