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Abstract Synthesizing human motions from existing
motion capture data is the approach of choice in most appli-
cations requiring high- quality visual results. Usually to
synthesize motion, short motion segments are concatenated
into longer sequences by finding transitions at points where
character poses are similar. If similarity is only a measure
of posture correlation, without consideration for the stylis-
tic variations of movement, the resulting motion might have
unnatural discontinuities. Particularly prone to this problem
are highly stylized motions, such as dance performances.
This work presents a motion analysis framework, based on
Laban Movement Analysis, that also accounts for stylistic
variations of the movement. Implemented in the context of
MotionGraphs, it is used to eliminate potentially problematic
transitions and synthesize style-coherent animation, with-
out requiring prior labeling of the data. The effectiveness
of our method is demonstrated by synthesizing contempo-
rary dance performances that include a variety of different
emotional states. The algorithm is able to compose highly
stylized motions that are reminiscent to dancing scenarios
using only plausible movements from existing clips.
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1 Introduction

Motion capture (mocap) technology has advanced to the
point that fine-grained digitization of human motion has
become widespread and has found utility in entertainment,
sciences, sports, education, etc. Despite the availability of
large motion capture datasets, their analysis, processing and
ultimately their reuse for synthesis of novel motions remain
hard problems. Motion analysis consists of inquiring about
the content of the different types of human actions (e.g.,
walking, dancing, runningor jumping) and their stylistic vari-
ations (e.g., intention, expression). In contrast, synthesis is
faced with the difficulty of generating plausible motion.

Early computational motion analysis and synthesis tech-
niques focused on the quantitative characteristics of human
motion (e.g., distances, velocities), while more recent
research is increasingly interested in the qualitative attributes
of motion. These attributes are directly linked to the person-
ality of the individual, including his/her style, emotion, effort
and the purpose of the action, reflecting its nuance.

Though current motion capture and animation technolo-
gies have made certain strides in simulating this subtle
dynamic range of motion, the need for more sophisticated
approaches is essential if lifelike human motion is to be pro-
duced. One challenging example for many motion analysis
and synthesis algorithms is generating plausible dance ani-
mations. Dancing consists of complex and highly dynamic
movements, including heterogenous and arbitrary poses that
are difficult to analyze using traditional methods. Techniques
such asMotionGraph (MG) [19] combinemotion clips based
on posture similarities to create longer motions. However,
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Fig. 1 An overview of our method; the transitions of the generated Motion Graph are pruned based on the similarity of the LMA-derived features
between frames. The remaining transitions ensure that style is coherent

they disregard the stylistic qualities of motion and require
special constraints (e.g., manual labeling) in order to splice
motions together that have continuity in their style, as is
the case with dancing motions. Ren et al. [34] observed
that motions synthesized by utilizing incorrect transitions
often have significant velocity discontinuities and are thus
perceived as being unnatural; this is because the blending
procedure attempts to smoothlymerge two distant poses with
different styles.

In this work, we propose an efficient method that can
automatically extract motion characteristics for synthesis of
dance animation. The method leverages knowledge from
anatomy, kinesiology and psychology as that is incorporated
in the Laban Movement Analysis (LMA) [21] framework.
LMA draws on Rudolph Laban’s theories and examines
movement through four interrelated components: Body,
Effort, Shape and Space. The LMA framework has been
widely used to map the personal movement vocabulary and
skills in different areas, including dance, choreography, the-
ater and kinesiology.

Similarly, we express the four LMA components via
a selection of 114 low-level metrics that are obtained by
computationally processing motion captured data. These
metrics capture qualities in motions that go beyond the
body’s postural configuration.We computemotion similarity
by calculating the Pearson correlation coefficients of these
LMA-derived features between frames of different motion
sequences. We adopt the Motion Graph data structure to
arrange our motions in a graph, but in addition to geometric
posture similarities, we use the style-basedLMAcorrelations
to connect its nodes (i.e., the frames at which motion clip
transitions can occur). The LMA-basedMotionGraph (LMA
MG) is utilized in two motion synthesis scenarios to demon-
strate that dance animations generated with our method are
plausible and their style is fairly consistent. In this work,
we use emotion as a representative kind of style that is eas-
ily recognizable. In line with emotion research [35], we use

acted data of various contemporary dance scenarios, each
expressing a different emotional state (e.g., angry, excited).
Toverify our results,wedevised a transition costmetric based
on these ground truth emotion states, which is calculated over
consecutive motion clips comprising a complete synthesized
motion.Motions generatedwith ourmethod have lower costs
than motions generated using standard methods. In addition,
we have conducted an online user survey in which partic-
ipants preferred the resulting motions of our method over
motions generated with plain Motion Graphs.

Figure 1 shows an overview of our methodology; after
data acquisition, the procedure is divided into two individual
processes. The first process calculates posture correlations
so as to construct a Motion Graph and find the potential tran-
sitions between clips, while the second process encodes both
the movement’s quantitative and qualitative characteristics,
based on principles drawn from Laban Movement Analy-
sis, in order to find their stylistic correlations. Finally, these
LMA correlations are used to prune transitions of theMotion
Graph that are not stylistically coherent, leading to an LMA-
basedMotionGraph. This novelMotionGraph can be used to
synthesize plausible dance animations. Note that our method
does not produce dance motions that are choreographically
correct neither does it attempt to compose a real dancing
performance.

The main contributions of this work are:

– A novel style-coherent motion analysis algorithm based
on Laban Movement Analysis principles.

– A framework for synthesizing style-coherent animation
based on Laban Movement Analysis, without requiring
prior labeling of the data.

– A style-preservingmotion synthesis technique that canbe
readily used with the popular Motion Graphs algorithm.
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2 Related work

Central to our approach is an LMA-based technique for
identifying and linking instances of similar pose and style
within motion sequences. The links manifest as edges on a
Motion Graph [2,19,22] to provide style-coherent motion
synthesis, targeted at dance performances. The literature on
data-driven animation is quite broad [33]; herewewill review
some of the most relevant work relating to style, dance
and LMA. Techniques in the area of indexing and classi-
fication also look at the relation and similarities between
motions [9,14,18,20,28]. However, these techniques are pri-
marily aiming to identify logically similar motions, while in
this work we focus more on style rather than content.

Style There are a number of techniques that deal explic-
itly with the style of movement. Style transfer methods look
at the issue of carrying over the style from one character
motion onto another. Brand and Hertzmann [6] use machine
learning techniques with a hidden Markov model to capture
style. Hsu et al. [16] use iterative time warping to map from
the input to the output sequence, while Shapiro et al. [37]
use style components. Other approaches learn a parametric
model that enables them to interpolate and extrapolate to new
styles. For example, Torresani et al. [40] employed LMA to
map into perceptual space, while Urtasun et al. [41] used
PCA to encode style. Hartmann et al. [13] presented an aug-
mentation to the GRETA agent architecture [12], where the
authors described the gesture selection process, that allows
for parametric control of the qualitative aspects of ges-
tures. The authors present a computational model of gesture
quality, drawing from psychology research, which allows
behavior modification via gesture synthesis, thus creating an
expressive Embodied Conversational Agent. Vasilescu [42]
organized data as higher-order arrays, and then by using sin-
gular value decomposition (SVD), extracted motion style
factors. Min et. al [26] looked at actions performed by mul-
tiple actors and in various styles to produce a generative
model with two parameters, “identity” and “style”; Motion
Graphs++ were later introduced for semantic motion anal-
ysis and synthesis [25]. Müller and Röder [27] introduced
Motion Templates, in which logically related motions were
classified and retrieved from motion databases. Recently,
considerable effort has been devoted to transferring style
from one motion to another; for instance, Xia et al. [45]
introduced localmixtures of autoregressivemodels to capture
the relationship between styles of motions, while Yumer and
Mitra [47] proposed amethod for style transfer basedon spec-
tral analysis. Holden et al. [15] employed deep learning for
animation synthesis; the authors learned motion manifolds,
which are represented by the hidden units of a convolutional
autoencoder, to synthesize the style of motion via interpo-
lation. Aristidou et al. [5] learnt regression models to map

motion onto a parametric space of emotion that was then
leveraged to stylize motion by modifying selected features.

Laban Movement Analysis (LMA) The principles of LMA
have been used in computer animation for over a decade.
Chi et al. [10] introduced the EMOTE system, in which a
set of parameters, inspired by the LMA Effort and Shape
components, is presented. These parameters are used to syn-
thesize gestures for motion parameterization and expression.
Later, Zhao and Badler [48] used the EMOTE results to
design a neural network for gesture animation. Many works
in the literature used LMA to quantify the expressive content
of gestures or to learn motion styles. Torresani et al. [40]
learn a nonlinear mapping between animation parameters
and movement styles in perceptual space. This mapping can
then be utilized to synthesize stylistic variations from arti-
ficially generated examples using the LMA Effort factors.
Luo and Neff [24] studied the relationship between posture
and gesture for virtual characters using LMA components;
in addition, Wakayama et al. [43] and Okajima et al. [30]
used these components for motion retrieval. Similarly, Kapa-
dia et al. [17] encoded structural, geometric and dynamic
features of motion as keys, as part of an indexing pro-
cess and for searching complex motions in large motion
databases. These keys were then combined to specify search
queries to retrieve motions. Shiratori et al. [38] used Laban
theory for synthesizing dance motion matched to music,
while Nakata et al. [29] used the LMA effort component
to explain bodily expressions. Aristidou et al. [3] have pre-
sented an LMA-based framework to extract the quantitative
and qualitative characteristics of acted contemporary dances,
aiming to classify motion sequences with regard to the
expressed emotion. Senecal et al. [36] used theAristidou et al.
framework to create social agents that recognize the emo-
tion of users by mapping motion onto an emotion diagram
using neural networks. More recently, Durupinar et al. [11]
have presented PERFORM, an approach for controlling the
personality of humanmotion. The authors applied the knowl-
edge earned by studying the LMA system to create variation
in the motion styles and satisfy user-assigned personality
traits.

Dance A number of computational tools or symbolic
systems for dance and choreography are available, such as
DanceForms [7], and LabanDancer [44]. Shiratori et al. [38]
synthesized dance sequences by taking into account the
music features, while Oliveira et al. [31] relied on beat-
segmented mocap to create a compressed representation of
dance gestures which was then used to synthesize dance
movements. In Li et al. [23], they use motion textures and
apply them to dancing. Aristidou et al. [4] presented a
method that uses motion qualities to assess the similarity
between dancing motions. Alexiadis and Daras [1] designed
a framework for automatic dance performance evaluation
using motion capture data using marker-less motion cap-
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ture. The authors represented the human motion data as
sequences of pure quaternions and subsequently introduced a
set of quaternionic vector-signal processing methodologies
for dance motion evaluation and comparison purposes. A
number of educational or gaming dance systems have also
been proposed, e.g., [8,39,46], where motion comparisons
are a core component; however, this is typically done using
geometric posture similarities.

3 Motion analysis

Human motion analysis is particularly challenging, espe-
cially when movement qualities and stylistic characteristics
are of high importance. The difficulty is even more pro-
nounced when we aim at smooth transitions in motion
composition using highly stylistic motions, such as dance
movements. In this work, we used a motion analysis frame-
work which is based on the LMA principles, aiming to
identify those factors that describe themovement signature of
the performer. LMA is a language for interpreting, describ-
ing, visualizing and notating human movement; it offers a
holistic documentation of the human motion and it is divided
into four components: (a) Body, which describes the struc-
tural and physical characteristics of the human body, (b)
Effort, which describes the intention and the dynamic qual-
ity of the movement, the texture, the feeling tone and how
the energy is being used on each motion, (c) Shape, which
analyzes the way the body changes shape during movement,
and (d) Space, which describes the movement in relation
with the environment.

In order to achieve style-coherent motion synthesis, as
we describe later in Sect. 4, we utilize the LMA framework
described by Aristidou et al. [3]; the authors proposed 27
basic spatiotemporal features for motion analysis, covering
all LMA components. A list of the LMA-derived features is
presented in Table 1.1 We extend this LMA framework by
adding some features that take into consideration the modes
of interaction with oneself, others, and the environment, aim-
ing at improving the stylistic coherence with regard to the
Space component that has not been thoroughly investigated
in [3]. Features f 28 and f 29 have been specifically chosen to
enable us to prune motion transitions between motions that
have large variations in terms of the relationship between the
performer’s own movement and the environment. In addi-
tion, in contrast to [3], the measurements for each side of the
body are treated independently so as to increase the sensitiv-
ity of the system when comparing movements and improve

1 The volume features ( f 19− f 23), apart from describing the LMA
Shape component, as given in [3], could also give intimations of the
Space component, as they additionally reveal the character’s kinesphere.

the smoothness of the synthesized motion. These additional
features are:

– The total volume ( f 28) of the space covered by the
performer in a time period (usually 30 frames), which
describes the relationship between the performer and the
environment. The total volumecanbe estimated by taking
the union (∪) of all the performer’s volumes (as calcu-
lated through f 19); in this work it can be calculated by
accumulating the bounding volume of all joints within
this time period.

– The cumulative distribution ( f 29) of the performer’s
movement, which is useful for estimating the performer’s
movement sphere. For instance, this feature enables dis-
tinguishing cases where the performer conveys a sense of
central radiance or a delicate sense of peripheral bound-
ary. This feature can bemeasured as the distance between
the mean of the projection of the pelvis (root) on the
ground and the current projection of the pelvis over the
time window.

It is important to note that, in this work, the term cumu-
lative distribution is related to the character’s movement in
space, rather than modeling the spatial tensions (peripheral,
central) in a body centric manner (e.g., arm movements rel-
ative to the core), as commonly used in the literature.

4 Motion synthesis

This section presents our novel Motion Graph framework
(LMAMG) for synthesizing style-coherent animation based
on the LMA components. The new synthesized animation
must maintain the realism of the original data and have plau-
sible continuity. Motion Graphs, in general, achieve good
connectivity and smooth transitions; however, it is possible
that edges connect clips with different motion styles, since
the links are formed subject only to matching their body
geometries. The proposed LMA-based algorithm filters the
graph to prune these redundant transitions, preserving only
those with a highly similar motion style in order to increase
in the naturalness of the generated motion.

As shown inFig. 1, the proposed framework is divided into
twomain processes: (a) aMotionGraph construction process
and (b) a style-based motion analysis process. The former
process represents the posture correlationP of inputmotions,
while the latter yields their style correlations. The frame-
work combines the two correlations to compute an overall
correlation (M = P+S) betweenmotion clips.More specif-
ically,P computes posture correlations betweenmotion clips
and constructs a Motion Graph. For the posture correlation

123



Style-based motion analysis for dance composition

Table 1 The measurements
used in our implementation to
compute the LMA-derived
features

Features Measurements

f i Description f imax f imin f iσ f iμ

Body f 1 Left foot-hip distance ϕ1 ϕ2 ϕ3 ϕ4

Right foot-hip distance ϕ5 ϕ6 ϕ7 ϕ8

f 2 Left hand-shoulder distance ϕ9 ϕ10 ϕ11 ϕ12

Right hand-shoulder distance ϕ13 ϕ14 ϕ15 ϕ16

f 3 Hands distance ϕ17 ϕ18 ϕ19 ϕ20

f 4 Left hand-head distance ϕ21 ϕ22 ϕ23 ϕ24

Right hand-head distance ϕ25 ϕ26 ϕ27 ϕ28

f 5 Hip-ground distance ϕ29 ϕ30 ϕ31 ϕ32

f 6 Hip-ground minus feet-hip ϕ33 ϕ34 ϕ35 ϕ36

f 7 Centroid-ground distance ϕ37 ϕ38 ϕ39 ϕ40

f 8 Centroid-pelvis distance ϕ41 ϕ42 ϕ43 ϕ44

f 9 Gait size ϕ45 ϕ46 ϕ47 ϕ48

Effort f 10 Head orientation ϕ49 ϕ50 ϕ51 ϕ52

f 11 Deceleration peaks ϕ53

f 12 Pelvis velocity ϕ54 ϕ55 ϕ56

f 13 Left-hand velocity ϕ57 ϕ58 ϕ59

Right-hand velocity ϕ60 ϕ61 ϕ62

f 14 Left foot velocity ϕ63 ϕ64 ϕ65

Right foot velocity ϕ66 ϕ67 ϕ68

f 15 Pelvis acceleration ϕ69 ϕ70

f 16 Left-hand acceleration ϕ71 ϕ72

Right-hand acceleration ϕ73 ϕ74

f 17 Left foot acceleration ϕ75 ϕ76

Right foot acceleration ϕ77 ϕ78

f 18 Jerk ϕ79 ϕ80

Shape f 19 Volume (5 joints) ϕ81 ϕ82 ϕ83 ϕ84

f 20 Volume (upper body) ϕ85 ϕ86 ϕ87 ϕ88

f 21 Volume (lower body) ϕ89 ϕ90 ϕ91 ϕ92

f 22 Volume (left side) ϕ93 ϕ94 ϕ95 ϕ96

f 23 Volume (right side) ϕ97 ϕ98 ϕ99 ϕ100

f 24 Torso height ϕ101 ϕ102 ϕ103 ϕ104

f 25 Hands level ϕ105−ϕ107

Space f 26 Total distance ϕ108

f 27 Total area ϕ109

f 28 Total volume ϕ110

f 29 Cumulative distribution ϕ111 ϕ112 ϕ113 ϕ114

between twomotion clips, a 35-frames2 movingwindowwith
1-frame step is used on each clip (our motion data are sam-
pled at 30 fps), while each time window is compared against
all time windows of the other clip. The posture correlation
is calculated by taking differences of body geometries of
the performer, defined as a set of points that represent the
joint angles, similarly to [19]. The distance d j between two

2 previous Motion Graph implementations have suggested using a
shorter window, however we set it at 35 to make it comparable to the
LMA window.

time windows anchored at the center (frame j) is the sum
of their pair pose distances over the time window; the dis-
tance between two poses equals the weighted sum of the
squared distances between the corresponding points pi and
p′
i, as shown in the following equation:

min
θ,x0,z0

∑

i

wi‖pi − Tθ,x0,z0p
′
i‖2 (1)
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for all points i , where wi are the weight coefficients and
Tθ,x0,z0 is the linear transformation that rotates a point p
about the vertical axis by θ degrees and then translates it
by (x0, z0) that brings the root of one pose to align with
the other. The distances d j are then normalized using the
formula d̂ j = (d j − dmin)/(dmax − dmin), where dmin and
dmax are the min and max distance values over all the data.
Short distances indicate a high correlation (cormax = 1)
between poses, and vice versa longer distances indicate a
low correlation (cormin = 0). The local maxima of pose
correlations between two motions indicate which pairs of
frames are more opportune, compared to their neighbors,
for transitioning between two motions. These pairs of poses
can then be selected given a user-defined correlation thresh-
old TMG. In our experiments, we found empirically that a
TMG set at 90% provides a reasonable amount of highly cor-
related poses. Having computed the local maxima of pose
correlations, a Motion Graph can be constructed. The graph
contains all input poses as nodes, which are interconnected
at the pairs of frames identified as being highly correlated,
i.e., candidate transition frames. The edges of the graph are
transition motion clips that can be generated using motion
interpolation between the two frames.

The second process, S, encodes both the movement’s
quantitative and qualitative style characteristics, based on
principles drawn fromLabanMovement Analysis. To extract
the proposed LMA-derived features and measure the obser-
vations, each of the motion clip’s frame is filtered with a
35-frames moving window, anchored at the center. Note that
for the stylistic coherence we measure motion qualities rep-
resented by distances in joint positions, similarly to [3]. We
use awindow stepping of 1, but this can be increased to speed
up computation at the expense of accuracy. We compute, for
each time window, the minimum, maximum, mean and stan-
dard deviation of the 29 basic features f i and derive 114
feature measurements (φi s).

For each window of a motion clip, a correlation metric
is computed to the corresponding window of the other clip
which provides an association between the time windows of
the two motions. The correlation metric measures the Pear-
son’s linear correlation coefficient [32],

rφA,φB = 1

N − 1

N∑

i=1

(
φA
i − μφA

σφA

)(
φB
i − μφB

σφB

)
(2)

where N = 114 is the number of feature measurements at
anchored frame i , μφA and σφA are the mean and standard
deviation for the window of the motion clip A, respectively,
andμφB and σφB are the mean and standard deviation for the
window of the motion clip B. Similarly, the style-correlation
metric is normalized to take values between 0 and 1. To
evaluate the correlation between two performances, each of

Current motion: excited

transition frame

Motion clip: afraid
candidate transitions

Motion clip: angry

Motion clip: excited

candidate transitions
Motion clip: happy

MG: 92.4%
LMA-MG: 70.8%

MG: 92.3%
LMA-MG: 78.1%

MG: 94.7%
LMA-MG: 69.1%

MG: 93.7%
LMA-MG: 76.1%

MG: 90.7%
LMA-MG: 83.8%

MG: 90.1%
LMA-MG: 78.4%

MG: 90.8%
LMA-MG: 81.1%

MG: 90.6%
LMA-MG: 78.3%

LMA-pruned transitions

LMA-accepted transitions

Fig. 2 In this diagram, a node (i.e., motion clip) of the constructed
graph and a subset of its transitions to other nodes is shown. In this
example, using the standardMotionGraph algorithm, only transitions to
highly similar frames of other motion clips are considered by supplying
a similarity threshold of 90%. The LMA-based algorithm prunes a large
number of the MG transitions keeping only those that better preserve
style-continuity

the four LMA components has been assessed separately for
each window, returning a Pearson’s linear correlation coeffi-
cient for each LMA component (in this case, N corresponds
to the number of the derived feature measurement for each
LMA component); the overall evaluation for a window is a
weighted sum of all its LMA components. The weights are
user-defined and provide a mechanism to control the impor-
tance of each LMA component when comparing motions.
For example, the weights used for each of the four LMA
components can be set to 25% to weight them equally. The
overall correlations computed in each window are then fil-
tered to reduce noise with a 1DGaussian function with mean
μ = 0 and variance σ 2 = 1. These correlations provide
an estimate of the relevance between the windows of the
two performances based on the LMA components. Two win-
dows (or frames which anchored in the center, as in our case)
are considered stylistically similar if their overall Pearson’s
linear correlation coefficient is larger than a user-specified
threshold; empirical findings show that a good LMA corre-
lation threshold (TLMA) which gives balance between good
connectivity with high correlation is 80%.

Finally, these LMA correlations are used to prune transi-
tions of the Motion Graph that are not stylistically coherent,
leading to an LMA-based Motion Graph. After pruning the
graph, individual frames may still have multiple transitions
to other motions, which may have both different posture and
LMAcorrelations. Selecting one of these transitions depends
on the application at hand. For instance, one may choose the
highest posture correlation, the highest LMAcorrelation, or a
weighted sum of the aforementioned correlations. An exam-
ple illustration is given in Fig. 2; Motion Graph links a node
from a dance motion, where the performer is acting as being
excited, to numerous motions annotated with a variety of dif-
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ferent feelings. Our LMA-based algorithm allows transitions
only to motions that satisfy a stylistic similarity threshold of
80%, which in this example are nodes from motions anno-
tated as happy and excited.

In this work, we compute both the Motion Graph and
style-based analysis for all timewindows to allowfine-tuning
between pose and style correlation at all frames.More specif-
ically, we want to give users the opportunity to decrease the
P threshold when building the graph and increase the S, in
order to make the stylistic coherency more important. Never-
theless, optimizations could be applied to save computational
time; for instance, instead of computing the LMA-derived
features for all time windows, it is possible to compute the
LMA similarity only at the pose-based transitions of the gen-
erated Motion Graph.

5 Synthesizing plausible dances

In this section, we present 2 example cases of style-coherent
dance animation synthesis using the proposed algorithmic
framework.

5.1 Data acquisition and processing

We acquired and used real motion capture data of contem-
porary dance performances. In the data acquisition phase,
we used an 8-camera PhaseSpace Impulse X2 motion cap-
ture system. Three actors, who were all professional dancers,
were asked to prepare and perform 6 contemporary dance
choreographies, all with differentmusic. Each performerwas
recorded independently, so as to avoid influencing the other
actors. A total of 18 contemporary dance performances, of
around 2700–3600 frames each, were motion captured at a
rate of 30 frames per second, approximately 54,000 frames of
motion in total. To enable uniform processing of all acquired
motion capture data, we retargeted motions to a single 3D
skeleton with standard human proportions and body struc-
ture.

The algorithms were implemented in C# within the
Unity3D game engine, and all processing was performed
on a computer running Microsoft Windows 10 with a quad-
core Intel i7-4700MQ CPU clocked at 2.4GHz and 8GB
main memory. These 18 performances were processed in
our motion analysis and synthesis framework to construct an
LMA MG, preserving only transitions between frames that
had above 80% LMA similarity. Using this graph, we have
performed two different motion synthesis tasks to obtain our
experimental results, presented in Sect. 6.

Our motion analysis relies on offline preprocessing, but
motion synthesis is computationally inexpensive and can be
performed in real time. Table 2 reports an indicative break-
down of execution time of each processing step using our

Table 2 Execution time of the main parts of our implementation

Step Time (mins) Time (%)

Posture correlations 92 25.8

LMA feature extraction 3 0.8

LMA correlations 259 72.8

Graph construction 2 0.6

Total time 356

implementation, which was not specifically optimized. The
preprocessing times are for all 18 performances. The most
expensive step is the Pearson correlation performed on the
LMA-derived features, which takes up to around 72.8% of
all preprocessing time. This is expectable since features of
all frames in the dataset must be correlated with all features
of all other frames; note that this cost could be drastically
reduced if we compute the LMA only at the MG edges. The
next most expensive part is the posture correlations which
takes up around 25.8% of the total time. The LMA-derived
feature extraction and the graph construction are trivial and
take only 0.8 and 0.6%.

Is this the same data as in 5.1? If so, then why are the num-
bers different? Maybe it is better to move this two sentences
to the previous section to avoid the confusion

5.2 Emotion state distance metric

For every motion sequence, dancers were instructed to act an
emotional state for 90–120s (2700–3600 frames). The acted
emotions that were motion captured were excited, happy,
relaxed, sad, angry and afraid, one performance for each
emotion separately, by each actor. Emotions were selected
based on the Russell’s circumplex model [35] (RCM) of
affect, shown in Fig. 3, which is a model of affective states.
Multidimensional scaling of the states distributes emotions
in a two-dimensional circular space, with arousal and valence
as its dimensions. The particular emotions used in this work
were carefully selected to span all 4 quadrants of the RCM.

The projection of emotions in a 2D space provides a set of
emotional state distances, as shown in Table 3. As it can be
clearly observed, excited andhappy have a lowEuclideandis-
tance,while angry and happy have a higher distance. This can
be interpreted as the cost of shifting from one emotional state
to another. Since our data were intentionally acted according
to selected emotional states, our dataset can be considered to
be labeled. However, note that we use this metric exclusively
for evaluating and comparing the ability of the MG and the
proposed LMAMG to produce animations that are plausible,
but we do not use the emotional states as semantic constraints
while traversing the graph. This eliminates the requirement
for an annotated dataset of any form.
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Fig. 3 Multidimensional scaling applied to the Russell circumplex
model of affect. Arousal is represented by the vertical axis and valence
by the horizontal axis. In our calculations, the diameter of the circle
is equal to 1. The red circle shows the average cost of a transition for
Motion Graph (CMG) scaled on the RCM diagram (centered at the emo-
tion annoyed), and the green circle the average cost of a transition for
our LMA-inspired method (CLMAMG), centered at the emotion pleased

Table 3 Euclidean distances between the emotions in Russell’s cir-
cumplex model

Afraid Angry Excited Happy Relaxed Bored

Afraid 0 0.08 0.36 0.44 0.68 0.45

Angry 0.08 0 0.43 0.07 0.69 0.39

Excited 0.36 0.43 0 0.13 0.58 0.67

Happy 0.44 0.51 0.13 0 0.48 0.67

Relaxed 0.68 0.69 0.58 0.48 0 0.54

Bored 0.45 0.39 0.67 0.67 0.54 0

When synthesizing motions using our dataset, e.g., when
making transitions between the frames of multiple motions
over time, we can accumulate the emotional state switching
cost using the Euclidean distance between the emotions in
Russell’s circumplexmodel.More specifically, themean cost
of transition C can be calculated as C = 1

k

∑
k si × s j , where

k is the number of transitions and si × s j is the Euclidean
distance between the emotions si and s j , as given in Table 3.
For example, if we explicitly synthesize a motion that transi-
tions from a happy to a relaxed motion, then the cost would
be 0.48. If a transition occurs between a happy motion to
another happy motion, the cost would be 0. Therefore, we
could anticipate that the higher the cost of a motion, the more
transitions are likely to have happened to other motions that
were not of similar emotion, which potentially influences the
motion style.

5.3 Synthesis based on highest similarity

With the MG and the LMAMG pre-computed, we were able
to synthesize animation sequences in real time. In this first
synthesis task, we generated two motions, one for each of
the algorithms (MG and LMA MG). A random frame of a
random motion was selected from the entire dataset of 18
contemporary dance performances. Both graphs were tra-
versed starting from that same frame. Every 80–100 frames,
each algorithm was forced to select the most similar transi-
tion frame according to the set threshold (MG threshold 90%
and LMAMG threshold 80%).We have generated 3 different
animations, each of 1000 transitions and for each algorithm.
These animations cannot be readily compared one-to-one
since each graph has different connectivity and the respective
transitions are more likely to generate a completely different
sequence of motions. Instead, we accumulated the emotion
state distance for all transitions (3 runs × 1000 transitions)
and computed the mean cost for each algorithm. The cost for
theMGwas CMG = 0.35with a standard deviation of 0.0046,
while the cost for LMA MG was CLMAMG = 0.24 and the
standard deviation for the values of the three runswas 0.0035.
Figure 3 shows the average costs, scaled on the RCM dia-
gram, for each method. In order to assess the usefulness and
the contribution of the two newly introduced features ( f 28

and f 29), we ran the same example, but this time using only
the 27 original features. Themean costwas CLMAMG∗ = 0.26
with a standard deviation of 0.0036, requiring about 1% less
computational time. A lower cost means that overall the ani-
mation states followed were closer, with respect to the RCM
distances, which also suggests that the style was more coher-
ent for theLMAMGthan for theMG. In both cases, repeating
the synthesis task multiple times yields very similar results
for each algorithm, as it can be observed by the respective
standard deviations.

5.4 Synthesis by example

A second synthesis task was performed based on a synthesis-
by-example scenario. We asked the professional dancers to
perform an additional contemporary dance and intentionally
alternate between multiple emotional states (in this order):
relaxed, sad, angry, happy. Each emotion was acted for 30 s
before the dancer moved on to the next one, without stop-
ping or pausing. The task is to synthesize a new dance using
motion data from the database that has an emotion that is as
similar as possible to the one expressed by the dancer. In real
time, the synthesis task (for both MG and our LMA-based
MG) began at the first frame of the example motion. As in
the previous case, we again forced themotion synthesis algo-
rithms to transition to another motion every 80–100 frames
andkeep consistencywith the emotionof the dancer.Approx-
imately 39 transitions were performed. We then calculated
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Fig. 4 A sequence of selected key frames from a synthesized dance
usingMG is shown on the left, while on the right the synthesizedmotion
using the proposed LMA MG is shown. In this example, the character
uses the highest possible similarity to select a motion to transition to.
MG uses body posture similarity between frames, while our LMAMG

method uses a style-coherent similarity metric. On the left, it can be
observed that although the character transitions to a similar posture, he
quickly crouches to the floor. In contrast, our method selects a motion
to transition to in which the character remains standing and has similar
motion style overtime

the average transition cost; the transition cost is computed by
measuring the distance between the current emotional state
against the expected and accumulate that cost over all transi-
tions. For theMG, the average divergence of that was 0.4024,
while for LMAMGwas 0.3421. Again, when the original 27
features were used, the average divergence for LMA MG*
was 0.3592. The readers are encouraged to check the results
in the accompanying video.

6 Results and discussion

We have synthesized a variety of dance animation sequences
using the framework and the procedures described in the pre-
vious sections. The constructed LMA-based Motion Graph
by default satisfies posture correlation; in our implementa-
tion, we select the transition with the highest LMA correla-
tion. Although the MG algorithm may encourage transition
to frames of othermotionswhere body posture is highly simi-
lar, in contrast LMAMG selects those transitions that motion
style is more coherent, despite body posture being less sim-
ilar. Figure 4 outlines this fundamental difference between
Motion Graphs and LMA Motion Graphs transitioning. We
have also applied ourmethod to other dances, including East-
ern Mediterranean folk dancing, and we have managed to
produce plausible animations; Fig. 5 demonstrates an exam-
ple utilizing LMA Motion Graphs with Cypriot folk dance
motion clips.

By pruning the Motion Graph transitions based on the
LMA similarity metric, keeping only transitions that are
stylistically more coherent, the number of transitions was
drastically reduced. For instance, in one of the motions
obtained from the highest similarity motion synthesis, in
1000 frames the Motion Graphs technique with a 90% simi-
larity threshold identified 3544 transitions. The same motion
processed in our LMA framework had 579 transitions, a

Fig. 5 A sequence of selected key frames from a synthesized dance
based on Eastern Mediterranean folk dancing motions, using our style-
coheredmethod. From left to right, the first dance (grayscale) transitions
to the second dance (color) while both the bodily and stylistic character-
istics are satisfied, achieving good continuity in motion and a plausible
movement

reduction of 84%. For some tasks, low connectivity may
be considered a disadvantage, but it must be noted that the
number of transitions remaining is very similar in style, and
therefore, synthesizedmotionswill still be plausible. In Fig. 6
presents a transition subgraph from one motion to all others.
We count present the percentage of transition based on the
emotional labeling of the motions. The transitions generated
when connectingmotions using theMG technique seem to be
equally distributed across all other motions. When applying
the LMAMG algorithm, the transitions generated are biased
toward motions that in our dataset were annotated with emo-
tions of the sameRCMquadrant, e.g., angry and afraid. Note
that emotions here are used only for verification. Both MG
and the LMAMG are agnostic of the emotion state labeling.

Our method can synthesize motion by calculating both
posture and style correlations. In contrast to others, we uti-
lize a variety of stylistic features to prune the Motion Graph
and choose the transition with the highest similarity that sat-
isfies both posture and stylistic constraints. For instance,
Müller et al. [28] describe a number of relational features
that study extensively the geometry of the pose; several mea-
surements have been applied that compute the rhythm and
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MG LMAMG

33.8%
45.5%

18.2%
32.5%

66.2%
54.5%

81.8%
67.5%

Q1 Q2 Q3 Total Average

(a) All Participants

34.5%
50.0%

20.7%
35.1%

65.5%
50.0%

79.3%
64.9%

Q1 Q2 Q3 Total Average

(b) Non-expert Participants

31.6% 31.6%

10.5%
24.6%

68.4% 68.4%

89.5%
75.4%

Q1 Q2 Q3 Total Average

(c) Expert Participants

Fig. 7 Histogram of responses on the preference of 77 participants
between motions generated with MG and LMA MG (our method). (a)
Reports the responses of all participants, (b) the responses of non-expert

participants are presented, while (c) describes the responses of expert
participants are shown. In all three cases, participants preferred the
results of our method, irrespective of being experts in dancing, or not

25%

14%

14%
11%

20%

16%

(a) MG

21%

31%
7%

12%

10%

19%

(b) LMA MG

Angry

Excited

Happy

Relaxed

Sad

Afraid

Fig. 6 In this figure, the frequency of transitions from a reference
motion (acted motion: angry) to all other motions in the dataset is
shown. Transitions are grouped by the acted emotion of the destination
motion. Our LMA MG contains a higher percentage of edges from the
reference “angry” motion to destination motions with similar emotions,
e.g., connected to “angry” destination motions (31%), when compared
to MG (14%)

the relations between body and pose points. These measure-
ments add extra constraints so as to restrict the selection
of the transition within the graph, increasing its quality and
accuracy. Nevertheless, they emphasized more on the body
relations without considering the effort required to perform
themovement, neither the relation between the performer and
the environment. Ourmethod comprises these tighter posture
criteria within the Body and Shape components and addi-
tionally considers stylistic variations within the Effort and
Space components. Conversely, Kapadia et al. [17] proposed
a relatively low number of LMA parameters to evaluate short
motion segments. Our LMA style-based method is suitable
for longer, more complex, heterogenous and highly stylistic
movements, such as dances, in which distinct movements are
difficult to isolate, compare and interconnect.

6.1 User evaluation

The results obtained by the two motion synthesis tasks
described in Sect. 5 are particularly challenging to evalu-
ate. The emotional state distance provides only a quantitative
measure of the synthesizedmotion and acts like a general pur-
pose error metric. However, the quality of humanmotion and
its plausibility cannot be captured by these metrics. There-

fore, we have conducted an online survey to identify whether
humans preferred the animations produced using Motion
Graphs or the LMA-based Motion Graphs. We asked par-
ticipants to watch 2 pairs of synthesized dance animations,
shown side by side and state which one from each pair has
a more coherent dancing performance. One animation was
generated with the standardMG algorithm and the other with
our LMA MG method for each pair. Both pairs of motions
were generated according to the highest similarity synthesis
described in Sect. 5.3.

We accumulated the participants’ responses as Q1 for the
first pair and Q2 for the second. In a third question (Q3),
we used a motion captured animation, which was not part
of our original dataset, in which actors performed a series
or predefined emotional states for 30 s each, i.e., relaxed,
sad, angry, happy. We then used this motion in an example-
based motion synthesis scenario, in whichMGwas traversed
using a high posture similarity threshold. Similarly, the LMA
MG was traversed using the LMA style threshold instead.
The two motions generated were played along the example
motion, and participants were asked to identify which of the
two dancers better accompanies the example dancer. Partic-
ipants were not aware of the method used to generate any
of the motions, or even that they were synthesized by algo-
rithms. We also asked other questions, e.g., how experienced
they consider themselves in dancing (in a Likert scale of 1–
10), their age and gender.

We collected the responses of 77 participants (36 males
and 41 females; 11 dance experts and 66 non-experts). Over-
all, 67.5% of all participants preferred the motions generated
by our proposed LMA MG technique versus 32.5% who
preferred those of the MG. We have divided participants
in two groups according to their reported level of dancing
expertise, to identify how experienced and non-experienced
participants judged the generated motions. 64.9% of non-
experienced participants (who declared a less than 7/10
experience) preferred the LMA MG generated motions ver-
sus 35.1% preferring those generated with MG. Similarly,
75.4% of experienced participants (who declared equal or
higher than 7/10 experience) reported preferring animations
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generatedwith ourmethod versus 24.6%who preferred those
of MG. Their responses as percentages for each of the Q1,
Q2, Q3 are presented in the histograms of Fig. 7.

6.2 Limitations

It is true that the emotional and stylistic attributes of human
behavior are subjective and may depend on the performer’s
skill, experience, momentary feelings, as well as external
factors, such as the environment where the performance hap-
pens. During data acquisition, we came across of a number
of challenges that may affect the quality of the captured
expression. For instance, themocap suit hasmarkers attached
on every limb giving the feeling of restriction or reduced
motion to the performer, while the size of the mocap labo-
ratory restricts the movements of the performer to a limited
space. In an attempt to reduce the influence of these factors,
we allowed the performers 5–10min for warming up to be
familiarize with the outfit and the environment. Moreover,
the actors danced with music of their choice and had the
required time to prepare the scenario of their performance.

In addition, wewould like to acknowledge the difficulty to
fully abduct the LMAcomponents using a number of discrete
low-level parameters. Human motion is complex, and it con-
sists of stylistic elements that define various states, including
the emotion, creativity and intention of performer, while the
way they are expressed is subjective based on the percep-
tion of the performer. The proposed framework gives a good
approximation of the mapping between measurable features
and the LMA components.

7 Conclusions and future work

In this paper, we have presented a novel style analysis algo-
rithm based on principles drawn from themovement analysis
theories of Laban. We have also shown how it can be inte-
grated in a Motion Graph for synthesizing style-coherent
animation given unlabeled motion data. The proposed MG
takes into consideration not only body posture, but also style,
including the required effort, shape and interaction of the
performer with the environment. The results demonstrate
the effectiveness of our method to extract qualitative and
quantitative characteristics of the movement and find style
correlations between different dance performances.

The algorithm as presented above traverses the graph
using only a local search. It makes the transition decision
without having a long-term goal; a future direction could
be to adapt the proposed framework to make global search
of the graph to prevent cases where each transition might
have a small deviation, but after a longer sequence we might
end up in motion clips very dissimilar from the initial one.
In addition, the proposed style-coherent motion analysis

algorithm could be used independently to find stylistic corre-
lation between motion clips, or for motion clustering in large
databases. In the future, we will apply the proposed frame-
work in motion libraries with more dances, larger variety of
styles and different performers; we would also like to apply
and adapt the LMA-based framework to generic motion data,
such as walking, running and jumping.
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