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Abstract
Motion capture sequences may contain erroneous data, especially when the motion is complex or performers are interacting
closely and occlusions are frequent. Common practice is to have specialists visually detect the abnormalities and fix them
manually. In this paper, we present a method to automatically analyze and fix motion capture sequences by using self-similarity
analysis. The premise of this work is that human motion data has a high-degree of self-similarity. Therefore, given enough
motion data, erroneous motions are distinct when compared to other motions. We utilize motion-words that consist of short
sequences of transformations of groups of joints around a given motion frame. We search for the K-nearest neighbors (KNN)
set of each word using dynamic time warping and use it to detect and fix erroneous motions automatically. We demonstrate the
effectiveness of our method in various examples, and evaluate by comparing to alternative methods and to manual cleaning.

CCS Concepts
•Computing methodologies → Motion capture; Motion processing;

1. Introduction

Motion capture has proven to be an effective technology for cap-
turing and digitizing human (and other) dynamic movements. This
technology advanced the ability to define and express complex an-
imations, enlarging the repertoire of human activities and actions
that could be used in animation. For accurate capture, the markers
placed on the performer must be visible and identifiable through-
out the capture. This poses a challenge when performers interact
closely as occlusions lead to missing and erroneous data. Still, there
is a great advantage in capturing multiple performers simultane-
ously as their actions and poses are more natural, especially in ac-
tivities such as dancing and sports. In this work, we introduce a
method to automatically analyze and fix motion capture sequences
using self-similarity analysis [BCM05].

In traditional motion capture systems missing markers can cre-
ate unnatural motions and outliers in the reconstructed motion,
while data generated from RGB-depth streams may have mo-
tion anomalies when limbs are not directly visible to the cam-
eras (see examples in the supplemental video). Most existing tech-
niques aim to improve the acquisition process itself, using hy-
brid systems that combine different motion capture technologies
(e.g., IMUs, RGB-Depths) [TZK∗11, SSK∗13], using statistical
methods [LCP∗14,PHLW15], or filtering the positions/rotations of
the occluded joints [LMPF10, AL13]. However, these methods are
mainly effective for single performers, short-duration occlusions,
and they only deal with some level of noise but not outliers. Thus,
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the common practice is to have motion capture specialists visually
detect the abnormalities and fix them manually. This process is time
consuming and error prone, preventing the large-scale availability
of motion data repositories. For example, we experiment that al-
most half of the salsa dances stored in the CMU motion capture
library [CMU17] have at least one joint with a motion anomaly.
This statistic emphasizes the difficulty of detecting erroneous mo-
tions manually. The need for automatic methods will only increase
as easier marker-less motion capture systems are become avail-
able [MSS∗17].

Our method allows automatic detection of errors, suggests re-
placement by plausible similar motions, as well as permitting other
applications such as reconstructing full motion from sparse motion
data. The method is based on the premise that human motion data
has a high-degree of self-similarity. Therefore, given enough mo-
tion data in the correct context, erroneous motions are distinct when
compared against other motions. Because our method does not op-
erate on marker data but at the joint level, it can treat anomalies
caused by any source including: markers and limbs that are (self)
occluded, markers that slip or detach during capturing, markers that
are mislabeled or attached incorrectly.

We combine all joint rotation values into a matrix which we call
the motion-texture, where each column represents a frame con-
sisting of the rotation of the joints and each row represents the
time-sequence of one joint. Motion-words are sub-windows in the
motion-texture (see rectangles in Figure 1, top). To define motion-
words, we combine sub-groups (that are not necessarily disjoint) of
joints based on the body connectivity and the fact that connected
joints tend to move in coordination. We find closest matches for
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Figure 1: When capturing multiple performers simultaneously, such as in dance scenes, occlusions and noise lead to missing and erroneous
data. We define a motion-texture map (top) where each row represents the rotation angles of a joint through time, and each column is a
single pose-frame. Motion-words (shown as rectangles) are short sequences of joints transformations around a motion frame. Our self-
similarity analysis is based on comparing each motion-word with its K-nearest neighbors, and building the movement digression map, or
MDM (bottom), that indicates unusual movements in time on specific joints. Cold colors (lower values) depict common motions in the MDM,
while hot colors (indicating higher values) depict distinct motions that are often erroneous.

each motion-word and create a mean-motion-texture by averaging
the K-nearest neighbors (KNN) of the words. Subtracting the orig-
inal from the mean-texture creates the movement digression map
(MDM), where distinct motions can be seen and detected clearly
(Figure 1, bottom). The MDM allows specialists to clearly iden-
tify both the frames and the specific joints with errors much faster.
Moreover, this analysis suggests plausible replacements for the er-
roneous words automatically by using the median of the KNN.

The contribution of our method lies in three main points.

• Inspired by patch-based self-similarity techniques used in im-
ages and video, we do not examine individual motion frames or
poses. Instead, we define motion-words as our basic elements
for analysis. This is achieved by using joint angles instead of ab-
solute marker positions. Joint angles are relative measures that
allow more self-similarities to be found in the motion, regardless
of the global pose and absolute position of markers.
• At the core of our self-similarity analysis is a time-scale-

invariant similarity measure between two motion-words. Since
similar motions can vary in duration, plus have local speed vari-
ations, we use dynamic time-warping (DTW) to compare them.
• We build an outlier-tolerant distance measure between motion-

words. Our approach does not consider noisy pose parts for
reconstructing the erroneous motion and allows a more fine-
grained representation of the errors by only replacing the erro-
neous parts instead of full body poses.

We demonstrate the effectiveness of our method in detecting
erroneous joints measurement using raw motion data of closely-
interacting performers as well as other data. We conducted a com-
parison with the time required for a motion capture specialist to re-
liably detect errors using commercial software, or when consulted

our MDM, and show that a considerable amount of time can be
saved. We also evaluate it with ground truth data, manual cleaning
and compare it to several alternative methods. The reader is encour-
aged to watch examples of the results in the accompanying video.

2. Related Work

Motion Retrieval: Several methods define a number of differ-
ent distance metrics and features for matching motion sequences
to similar examples from a motion database [KGP02, KPZ∗04,
BCvdPP08]. For instance, Kovar and Gleicher [KG04] use match
webs to find numerically similar motions, Müller et al. [MRC05]
introduce relational features for content-based retrieval, and Kapa-
dia et al. [KCT∗13] present an LMA-based retrieval method that
integrates features which encode both the geometric and dynamic
properties of motion. However, relational or geometric features are
not suitable for similarity of motion at joint level [ACC15]. Chai
and Hodgins [CH05] find the K-closest samples of a posture us-
ing metrics that involve pose and velocity features, and then build
a graph to accelerate the search of the nearest neighbors. Similarly,
Kruger et al. [KTWZ10] construct a kd-tree, and then create a lazy
neighborhood graphs (LNG) for fast selection of motions that are
temporally coherent. We use motion-words instead of single poses
as our basic unit to search for similarity in the database, that addi-
tionally captures the temporal evolution of motion.

Motion capture errors: Animated motion is subject to errors
from character retargeting, body penetration, wrong contact with
the environment [VSHJ12, LCX16], and feet sliding [HKT10]. In
this work we focus only on motion anomalies due to bad capturing
(missing or erroneous marker data). Markers position can slip or
be missing due to self or outside occlusions especially for closely
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interacting performers. Methods that deal with incomplete or erro-
neous motion capture data can broadly be classified into three main
categories: interpolation and filtering, statistical methods, and data-
driven methods.

Interpolation techniques have been extensively used in the
past to recover incomplete motion data entries [RCB98]. Several
commercial products take this approach, for example, Autodesk
Motion-Builder integrates linear or cubic spline interpolations to
estimate the intermediate missing marker data. In general, these
methods require the data to be well captured before and after the oc-
cluded section. An alternative approach is to employ filtering tech-
niques, with carefully defined parameters, to predict the missing
marker entries [SLSG01, TK05], while inferred information from
neighboring markers and bone-length constraints are integrated for
additional control [LMPF10, AL13]. However, the performance of
this filtering methods is usually unsatisfactory when all markers are
occluded for extended time periods.

Data-driven methods have been popular recently due to the avail-
ability of larger databases of motion capture data. They are mainly
divided into marker-based methods, that primarily exploit the cor-
relations among marker trajectories to estimate the positions of
missing entries [HFP∗00], and pose-based, that typically search for
similar posture patterns within a database to reconstruct missing
data [HGP04, SDB∗12]. In marker-based method, the main idea is
to enhance information from nearby markers that share kinematic
relations with the occluded markers (rigid cliques) [ZVDH03,
GF16]. Park and Hodgins [PH06] fill the empty entries by per-
forming Principal Component Analysis (PCA) to learn the spa-
tial relationship between each marker and its neighbors. Tay-
lor et al. [THR06] use Conditional Restricted Boltzmann Machine
(CRMB) to impose the correlation between joint angles. A differ-
ent method for recovering missing positions is to employ matrix
factorization, either on block-based motion clips [PHLW15] or by
combining it with temporal smoothing [BL16]. Liu et al. [LCP∗14]
treat marker motion data as a mixture of multiple low-dimensional
subspaces, and assign similar moving trajectories to their corre-
sponding subspaces using Local Subspace Affinity (LSA), whereas
the local information around each trajectory creates a pairwise sim-
ilarity matrix. Liu et al. [LM06] assign motion sequences with
missing entries to pre-learnt local linear models, and then re-
cover the occluded positions by finding the least squares solu-
tion to the available markers of that model. On the other hand,
pose-based methods, such as Lou and Chai [LC10], learn a se-
ries of spatial-temporal patterns from prerecorded human motion
data; then, they apply a nonlinear optimization framework to min-
imize the residual between the noisy input and the filtered motion.
Feng et al. and Xiao et al. [FJX∗15, XFJ∗15] divide human pose
into parts to learn multiple dictionaries that contain the spatial-
temporal patterns of human motion, that are later adopted to re-
move the noise and outliers from noisy data using sparse coding.
Holden et al. [HSKJ15] apply deep learning and auto-encoders
to learn a human motion manifold using convolution that en-
codes the temporal aspect of motion and the pose subspace. Trum-
ble et al. [TGM∗17] learn a pose embedding from volumetric prob-
abilistic visual hull data to accurately estimate and reconstruct 3D
human poses. A bilinear spatiotemporal basis model has been pro-
posed by Akhter et al. [ASK∗12] that exploits spatial and temporal

correlations in motion data, and has been used for filling missing
entries and motion data denoising. Unlike these data-driven meth-
ods, our method does not necessarily require a pre-training session,
it can operate in an unsupervised manner by analyzing the self-
similarity of the input sequence, but it may also use a preprocessing
stage on larger datasets.

Inspired by the recent advances in image analysis for irregular-
ity detection [IS15], our method detects and reveals non-repetitive
erroneous data. Analyzing non-local repetitions to spot anomalies
on images is based on the premise that outliers typically have large
variation relative to normal image-patches [BKCO16]. In a similar
spirit, our method breaks motion into motion-words, and analyzes
their prevalence in the data.

Motion Reconstruction: There are several data-driven methods
that reconstruct full-body motion streams using sparse motion cap-
ture inputs from a small set of inertial sensors by retrieving matched
motion sequences from a motion capture library [SH08, TZK∗11]
Xia et al. [XSZF16] learn a dictionary from a large number of
complete-incomplete training frame pairs and then recover motions
using sparse representations and the learned dictionary through an
optimization model. Another option to deal with sparse motion cap-
ture data is to model the end effector trajectories and then apply a
biomechanically constrained inverse kinematics model to fill in the
gaps in the motion data [ACL16]

Error Detection: Most methods in the literature target the prob-
lem of reconstructing entire sequences of marker data, while
ours can also detect anomalies, and replace them. So far, only
a few methods aim to identify abnormal motions. For instance,
Ren et al. [RPE∗05] present a method that quantifies the natu-
ralness of synthesized human motion. The authors decompose the
motion into parts; using a large number of features, which consist
of joint rotations, linear and angular velocities. They build statis-
tical models to classify movements as natural or unnatural. Kim
and Rehg [KR08] introduce epitomic analysis to generate natural
motion epitomes that are used to compute a score that indicates
whether a motion is natural or not. These methods evaluate the mo-
tion naturalness globally, and their naturalness score is computed
as an aggregate over the entire sequence. Unlike our method, they
do not operate at joint level and are not aimed at detecting the erro-
neous joint rotations which may occur only in short-time windows.

3. Abnormality Detection

The main goal of our work is the detection of joint rotations that
have been incorrectly reconstructed because of noisy (raw) data
or missing entries due to occlusions. To promote finding similar-
ities, we convert the (possibly erroneous) raw marker positions to
joint angles. Using relative joint angles, instead of absolute posi-
tion of markers, allows finding more self-similarities in the motion
of joints, because of the intrinsic nature of the joint rotations, which
are spatially-invariant regardless of the global pose.

3.1. Self-similarity Motion Analysis

To simplify the analysis of time-dependent motion sequences, we
use a motion-texture, T , that allows motion sequences to be treated
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Figure 2: Motion presented as a texture: each column repre-
sents the rotations of the joints over time. Motion-words are illus-
trated as a rectangle of groups of joints. Solid rectangles define
a source motion-word, while dashed rectangles describe their k-
nearest neighbors (KNN). Note that the KNN can have a different
durations than the source.

in a similar way to images (see Figure 2). Each column in T rep-
resents the degrees of rotations of all joints in one frame, while
the horizontal axis is time. We define a motion-word as a narrow
temporal-window of a group of joints, representing a short-time
motion sequence of part of the body (see rectangles in Figure 2). In
contrast to single pose feature-sets, our motion-words represent the
pose’s local evolution in time, allowing the use of spatio-temporal
properties of the motion within the cost metric. Note that we use the
term motion-texture in a different manner than Li et al. [LWS02];
they define a statistical model for motion and generate new in-
stances, while we analyze the original motion as a texture of ro-
tation angles.

Using sub-groups of joints allows the full-body motion to be sep-
arated into sub-motions and increases the chance of finding simi-
larities. We define groups of joints that adhere to the human figure
topology, and hierarchy to capture joints that move in a coordinated
way, and they describe meaningful sub-motions. The joint groups
do not form a partition or segmentation of the body and may over-
lap. In this work, we used the top and bottom, left and right half
of the body as well as the whole body as groups to define motion-
words, but other groups or combinations of sub-groups could be
used as well. All the motion-words form a vocabulary of the entire
input motion sequence.

To analyze the motion self-similarity, we measure the words’
prevalence in a given context, by considering word-to-word sim-
ilarity. To build a prevalence measure, we define the mean-word
as the mean of the KNN-set of a given word. Words that are sim-
ilar enough to the mean-word are treated as normal. In contrast,
words that contain many joint rotations that disagree with their
corresponding mean-word are considered distinct. To be robust to
outliers, we disregard (zero out) the largest distances (in our case
the 3 largest out of 24 joints) in the computation when we com-
pare the motion-word to its mean-word. Note that the rotation val-
ues for these joints are discarded only for measuring the distance
between motion-words, but are used when producing the mean-
motion-words.

Distinct motion words could either contain errors or be unique
but correct. The differentiation between erroneous and unique mo-

tions is challenging because they have very similar characteristics.
In both cases, a number of joints differ from the corresponding
mean word. Our method deals with this challenge in two ways: first
by defining appropriate context, and second by examining joints
sub-groups words. By enlarging the corpus of motion data, there
is a better chance of finding repetition even for unique motions.
Therefore, we define different contexts depending on the complex-
ity of the motion. For simple motions (e.g., a walking sequence),
the context could be a single motion capture sequence, while for
more complex motions, it could include other related motion cap-
ture sequences (for example, all salsa dances of a given couple).
Second, using smaller groups of joints increases the chance of
matching more easily. However, because of human kinematic prop-
erties, there are spatial and temporal correlations between joints.
Together, searching for word-to-word similarity in a larger context
using smaller joint-groups, it is more likely to distinguish unique
motions from erroneous (see the discussion regarding context de-
termination in Section 6).

3.2. Duration Invariant Motion-Words Distance

Each motion-word contains a sequence of consecutive frames de-
scribing human (sub-)poses. The distance between two motion-
words is based on the distance between two motion frames, which
reflects the differences in the poses they describe. Various cost
functions between body configurations can provide a distance mea-
sure to match human poses. For example, the weighted sum of the
Euclidean distances between joints [KGP02], or a weighted sum of
the difference in rotation between joints [LCR∗02]). An extensive
discussion and evaluation on cost metrics for matching motion seg-
ments can be found in Wang and Bodenheimer [WB03]. To mea-
sure the similarity between poses, we first discard the translation
and align the facing direction of the root joint†, and then use the
formulation presented in Lee et al. [LCR∗02]:

dist2
i j =

m

∑
k=1
‖ log

(
q−1

jk qik

)
‖2, (1)

where m is the number of joints in the motion word, and qik, q jk ∈
S3 are the complex forms of the quaternion for the kth joint in the
i and j frames, respectively. The log-norm term ‖ log

(
q−1

jk qik

)
‖2

represents the geodesic norm in quaternion space, which yields the
distance from qik to q jk on S3.

The distance between two motion-words could now be defined as
the sum of distances between their poses in each frames. However,
even for a single behavior, such as walking, human motion can vary
in duration and speed. Thus, we cannot simply compare fixed du-
ration words. Instead, we use DTW to synchronize two source and
target motion-words that may have different durations or variations
in speed. DTW compares the skeletal (sub-)pose for each frame of
the source word against the (sub-)pose of all frames of the target
word using Eq. 1, and finds the optimal matching-sequence that

† By aligning the facing direction of the pose we can compare similar poses
regardless of their global position and orientation. Nevertheless, anomalies
on the root joint can still be detected based on the rotation of the remaining
2DoF.
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Figure 3: The selection of the K-nearest neighbor words. The bot-
tom image presents the motion as texture. The top image shows
the distance between source word (orange rectangle) and all target
words over time. The KNN words (magenta rectangles) are chosen
as the K smallest local minimas of the distance function (red stars).

minimizes the distances between matching pairs (see Appendix for
more details). The distance between the two motion-words is de-
fined as the average distance of the matched frames in the optimal
matching sequence found by DTW. The time-warped target words
are then resized to the source words size by resampling using a
polyphase filter [Rot83]. In this manner, our method appreciates
the dynamics of motion that are implicitly encoded in the motion-
words and the DTW comparison method.

3.3. Defining the KNN

To find the K-nearest neighbors of a given source word, we define
a function over all frames whose value is the distance between the
source word and the time-warped target word centered at the frame
(see Figure 3). The closest K target words are very often overlap-
ping, and may be too close to the source word, not reflecting the real
prevalence of the source word in the corpus. Therefore, to choose
the KNN, we select the K local minima of the distance function,
and discard any local minima that is temporally too close to the
source word (N/2 frames, where N is the word size). This opti-
mization assures we select KNN that originate in different regions
of the motions data.

3.4. The Movement Digression Map

An essential component of our motion abnormality detection
method is the generation of the movement digression map (MDM).
The movement digression is the same size as the motion-texture,
and highlights the frames where joint rotation values are distinct
in the context of the overall motion. Each entry in the MDM has a
divergence value in the range [0,1]. Lower values indicate that the
joint rotation at the given frame has a good match in the corpus,
while higher values correspond to joints with distinct joint rotation
values. In contrast to previous methods that look at the whole pose,
our approach highlights not only the timeframes where abnormal-
ity appears, but also the specific joints that are distinct. An example
is illustrated in Figure 1, where the distinct parts are visualized in
hot colors.

To build the MDM, we first create the mean-motion-word for
each source word Wi by averaging the values of the KNN words
that were found in the motion corpus W̄i =

1
K ∑

K
j=1 W j

i . We build
the mean-motion-texture, T̄ , by averaging all the mean-motion-
words that cover every frame. Distinct joint rotation values in the
input motion are generally more rare, and therefore, their joint rota-
tion values will differ from the values in the mean-motion-texture.
We define the movement digression map MDM using the follow-
ing procedure. First we find the absolute difference between the
motion-texture T and the mean-motion-texture: M = |T − T̄ |. Sec-
ond, we normalize each row of the resulting map M by dividing it
by the mean of that row (each row defines the changes in the rota-
tion of one joint). Lastly, the movement digression map MDM, is
defined using the kernel function MDM(i, j) = 1− e−M(i, j)2

.

4. Motion Reconstruction

The MDM can be used as a simple means for motion capture spe-
cialists to detect errors and clean them manually (see Section 6.1).
However, our method can also automatically replace an erroneous
part of the motion with a corresponding plausible set of joint rota-
tion values that have similarities with other parts of the motion. In
contrast to previous methods, we only replace the erroneous joint
values and do not smooth the full motion, preserving the correct
parts and the original style of the motion.

Replacing erroneous joint rotations: For automatic replacement,
any element in the movement digression map whose value is higher
than a threshold (we use 0.5) is marked as erroneous. Next, the val-
ues of the erroneous joints in erroneous frames are replaced with
corresponding values taken from the median of the KNN set of the
word around this frame. We use the median and not the mean KNN
as the mean is not an actual motion. When there are contact-point
constraints of the character’s end-effector positions (as defined by
the user), instead of the median, we select the word with the small-
est Euclidean distance between the affected end effector(s) and the
contact point(s) from the candidate KNN set.

There are numerous methods that allow blending of similar mo-
tion examples [KG03, IAF07]. Because we replace only a small
set of joints that correspond to the erroneous values, blending is
achieved by applying a quadratic Savitzky-Golay filter that allows
smooth transitions between the original motion and the amended
part. In the constrained case, to ensure that the end-effectors reach
the appropriate contact points, we integrate an inverse kinematic
solver (FBBIK) [Roo17] that manipulates the skeleton so that the
affected end effector moves to the desired position.

Motion reconstruction from sparse data: Our self-similarity
analysis can also be used to reconstruct motion from sparse repre-
sentations. In this scenario, the input is a motion sequence contain-
ing only a sparse number of joints, and the goal is to reconstruct
the full motion. We search for similarities between the input se-
quence words to the corresponding subset of joints in a motion that
contains full body joints, and select the KNN words that contain
the full joint set. The very first word in the output is assigned as
the nearest neighbor with the smallest distance to the sparse data.
Then, for temporal coherence and smooth transitions, we iteratively
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select the motion-word whose first frame has the smallest distance
to the last frame of the previous selected word from the candi-
date KNNs. Lastly, the transitions are smoothed using a quadratic
Savitzky-Golay filter.

For both scenarios, replacing erroneous motions or filling in
sparse data, we employ a post-processing step that involves motion
refinement for foot-skating and/or foot-plant violations [LMT07].

5. Applications

In this section, we present several examples for applications of our
self-similarity analysis. Methods that can automatically detect and
repair errors in motion data will play a useful role in the motion
capture pipeline, as detecting errors can be a time-consuming and
complicated process. To locate potential anomalies, all joints for
the entire duration of motion must be examined. Our method not
only flags the frames that contain errors, but also indicates the joints
where the error appears and provides feasible replacements. Thus,
the MDM can be considered as a fast and effective auxiliary tool to
detect, and later repair errors, or fill in sparse or missing data.

Implementation: For our experiments, we use the m= 24 most in-
formative joints with their relative joint angles. All motion capture
data were sampled at 120 frames per second; by taking into account
that human motion is locally linear and smooth (see e.g., [FF05]),
data were reduced for computational efficiency to 24 frames per
second, without sacrificing useful information. Selecting the ap-
propriate length for the source and target motion-words is impor-
tant since short words do not capture the temporal consistency of
motion (e.g. fail to detect abrupt changes in acceleration), while
longer words have smaller correlation with others, resulting in an
increase of false positive detections. We tested different sizes and
chose the one that provided the highest accuracy in detection. We
use 15 frames for source words, but skip every 5 frames to reduce
computation time (hence, two consecutive source words overlap in
10 frames), and 20 frames for target words, without skipping. We
search for the K = 5 nearest neighbors of every source word. Here
too, we tested several values and found that 5 performed best. To
be robust to outliers, we chose in our distance metric of eq. 1 to
disregard the three joints with the largest distance for large motion-
words, or one joint with largest distance for smaller motion-words
(sub-groups of joints).

All experiments were run on a six-core PC with Intel i7-6850K
at 3.6GHz, 32GB RAM using MATLAB R2014b under Windows
10 operating system. We used motion data taken from the Carnegie
Mellon University motion capture database [CMU17], from Seoul
National University movement research lab [WLO∗14], as well as
optical motion data acquired using an 8-cameras PhaseSpace Im-
pulse X2 motion capture system [Pha17]. For the optical acquisi-
tion, the subjects usually wore 38 markers (active LEDs), and their
3D positions were located by the surrounding cameras. We also
collected skeleton motion data using two RGB-depth sensors (Mi-
crosoft Kinects) [iPi17]. The RGB-depth data was post-processed
to smooth motion and remove jitters. Raw marker data, as well as
RGB-depth motion data, were transformed into Biovision hierar-
chy format (.bvh) that includes absolute root position and orienta-
tion of the relative joint angles.

Figure 4: Error detection and correction on close interacting per-
formers. Top: a salsa dance motion taken from the CMU mo-
tion capture database, where the performer is closely interacting
with his/her dance-partner (subjects 60 & 61). Bottom: performers
pushing each other and a kung-fu fight. Such data contains a num-
ber of joint anomalies; the erroneous parts are highlighted in red,
while the automatic plausible motion that was used to replace the
joint rotation are colored in brown.

Performing self-similarity analysis on a 20 second motion (with
approximately 95 motion-words) takes approximately 140 seconds.
However, as we were not using a search structure, the execution
time grows exponentially when using larger contexts. For instance,
on a database with total length of approximately 600 seconds, our
method required around three hours to perform the similarity anal-
ysis, and detect the erroneous areas. One way to improve scalabil-
ity is to use a search structure and dimensionality reduction tech-
niques, such as Principal Component Analysis; however, the use of
DTW as the distance measure between words makes it difficult to
combine it with such methods. Thus, we reduce the computation
time by dividing the error detection process into two stages. In the
first stage, we apply the word-to-word self-similarity analysis on
all the joints, but search only locally (e.g., using only the motion
capture sequence itself). Such local similarity analysis may have
a number of false positive detections. In a second stage, we use
sub-groups of joints and compare against a larger-scale context but
only on areas around the distinct words found in the first step. Ex-
periments show that the two-step framework obtains almost as high
precision and recall rates, while substantially reducing the required
computation time.

Error Detection and Replacement. Examples for error detection
and replacement using our method on motions generated using
optical markers data are shown in Figure 4, and on data gener-
ated from RGB-depth sensors in Figure 5. For all examples, the
character’s skeleton was divided into four overlapping groups. The
context for the word-to-word similarity of the marker-based clips
included a medium-scale database of 15 salsa and contemporary
dances, respectively, while the length of each motion clip in the
database is in the range of 10-15 seconds. For the RGB-depth mo-
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Figure 5: Error detection and correction on motion generated from
RGB-depth data (left). The original skeleton as returned by the iPi
software is shown in the middle, and the right image presents the
repaired motion using our method. The context data in this case
came from optical motion capture acquisition.

Figure 6: In this example, motion data of different type of motion
are used as the context to detect and replace errors. The top image
shows a gymnastics example, where the head rotations have been
artificially modified (shown in red). Using contemporary dance
motions, our method successfully detects and corrects the error
(shown in green at the bottom).

tion clips, the context used was also a medium-scale database of 15
similar locomotion clips taken from the CMU database.

Using Different Contexts. In general, there is a higher detection
rate when subgroups and lager contexts are used. However, when
data availability is limited, we can still detect and reconstruct mo-
tions using other types of motions. The example described in Fig-
ure 5 uses data from optical motion capture as the context for cor-
recting a RGBD capture. In another example, finding a large and
clean dataset for gymnastic motions comprising of four different
pirouettes is difficult. As the length of these motions is short (ap-
proximately six seconds), there were not enough similar move-
ments to build the mean-motion-word. We created a larger-scale
context by using contemporary dance sequences in addition to the
gymnastics sequences. Even though these motions are of a different
type, our method can successfully detect the erroneous joint rota-
tions (see Figure 6); that was possible because our method found
similarities in the context of sub-words.

Figure 7: Integrating contact constraints to further improve motion
reconstruction. The motion containing error (red hand) is shown on
the left. The middle image shows the reconstructed posture using
median, and the right image shows the reconstruction incorporat-
ing hand contact constraints (green hand).

Figure 8: Using a sparse data of nine selected joint rotations (out
of the 24 available joints) shown in red, we have managed to recon-
struct the full-skeleton motion of a salsa dancing from a database
consisting of similar motion capture-data.

Contact Constraints. Figure 7 illustrates an example that demon-
strates the importance of contact constraints. It compares the re-
constructed motion when the median of the KNN was selected to
a version where the closest word to meet the contact constraints
(contact between the hands of the two performers) was selected.

Sparse Motion Reconstruction. Figure 8 illustrates an example
from salsa dancing (subject: 61_04) where full-skeleton motion has
been reconstructed using a set of only nine joint rotation values
(neck, left and right shoulders, elbows, hips and knees), by search-
ing for similarities in a database of 29 salsa dances. The recon-
structed postures are similar to the original motion, illustrating that
our method selects the most appropriate motion-words for refin-
ing motions (tiny differences in the reconstruction compared to the
original motion can be seen mainly in the feet).

6. Evaluation

In this section, we present several experiments evaluating our
method, as well as compare to previous approaches and to man-
ual correction. We use data of closely interacting motions (e.g.,
salsa dances, waltz and kung-fu fighting), as well as highly dynamic
and complex movements (e.g., contemporary dance and gymnas-
tics), and locomotion. Such data contains numerous joints with
anomalies and comprise many different error types, including rapid
changes in rotation that cause unrealistic joint accelerations, ab-
normal joint rotations, and joint rotations that violate human con-
straints.

We used our method to detect erroneous joint rotations in the
CMU motion capture database that remained even after manually
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cleaning. In complex and dynamic motions such as Salsa dance
with closely interacting performers there are many errors (in sub-
ject 60 we found errors in 4 different joints, in 10 out of 15 clips,
and in subject 61 we algorithmically found and manually verified
errors in 3 joints, in 3 out of 15 clips). However, even in simple
motions such as locomotion, it is sometimes difficult to manually
find and clean all errors.

Precision & Recall: Because the number of erroneous words is
very small compared to normal words, the accuracy of any method
would be very high if it simply found no errors. The important
measure to examine is recall, i.e. what percentage of errors are de-
tected? We conducted a statistical analysis to compute the recall
(T P/(T P+ FN)) and precision (T P/(T P+ FP)), where T P de-
notes the true positive rate of detecting joint rotation anomalies,
FN the false negative rate, and FP the false positive rate. We use
two different types of motion datasets: human locomotion, and a
complex dynamic dance motion. The total length of motion data
used for evaluation is approximately 40,000 frames, resulting in
8,000 motion-words. As ground truth we used both data that was
examined by a motion capture specialist, and data where we artifi-
cially introduced some errors. About 1,000 words have been veri-
fied to include at least one joint with erroneous rotations. The de-
tailed statistics, as well as computation time (per clip) for varying
sizes of databases are reported in Table 1. Both recall and precision
of our method are very high for both error types.

We compared our method to three baseline alternatives: (a) a
method that checks whether the joint rotation values violate anthro-
pometric constraints, (b) a method that detects unrealistic abrupt
changes in joint rotations by checking if their derivative is above a
threshold, and (c) a combination of the two methods. We searched
over a large dataset of clean data to define the limits for both the
joints’ rotation values, and rotation change rate. Even though the
precision rate of these methods is high (see Table 1), the recall
rates are significantly lower than our method, indicating that only
a small percentage of errors are detected. These methods perform
worse than ours because they cannot detect anomalies in motion
related to the temporal and spatial correlation of the joints. A joint
may satisfy the rotational or derivative constraints, but if it does
not respect its temporal and spatial correlations with other joints,
the overall motion may look unnatural. Moreover, these methods
can only detect the erroneous areas, and can not suggest a plausible
replacement as our method does.

Context Determination: The tradeoff between the complexity of
the input motion and the size of context used for similarity analysis
impacts the error detection rate. The different contexts presented in
Table 1 include only the motion capture sequence itself (local), 5-
10 similar additional sequences (small-scale), and 20-30 sequences
(large-scale). Each sequence is approximately 15 seconds long. The
table states the time per-clip required to detect the error in the
different scenarios. Simple repetitive movements, such as human
locomotion, have high precision and recall rates even when using
small-scale contexts. In contrast, complex motions have higher rate
of false positive detections when using only local context. Using
larger datasets of similar motions allows finding matches for less
common motion words leading to better distinction between unique

 

 

 Local Small-Scale DB Large-Scale DB 

 Average Time: 2min Average Time: 20min Average Time: 90min 

 Locomotion Dance Locomotion Dance Locomotion Dance 

SSA (ours)  
Recall: 0.985 0.947 0.985 0.952 0.988 0.968 

Precision: 0.875 0.785 0.919 0.832 0.936 0.896 

SSA with Chai 
& Hodgins 

Recall: 0.934 0.846 0.937 0.867 0.937 0.873 

Precision: 0.816 0.766 0.837 0.819 0.869 0.804 
        

  Baseline (a) Baseline (b) Baseline (c) 

  Locomotion Dance Locomotion Dance Locomotion Dance 

 Recall: 0.529 0.365 0.075 0.049 0.587 0.395 

 Precision: 1.000 1.000 0.969 0.897 0.996 0.986 

 

Table 1: Top: the recall and precision rates (and time) of our
method for detecting errors on two different types of motions and
various sizes of contexts (databases used for searching KNN). We
compare our scale invariant metric to using the distance measure
from Chai and Hodgins [CH05]. We also show (bottom table) the
statistics of three baseline methods on this data (see text for de-
tails).

Figure 9: The top movement digression map shows error detection
on a walking example when searching locally, and the bottom map
when searching on a small-scale database. Note that in the top map
a unique motion was labelled erroneous, because no similar motion
was included in the examined motion sequence.

and erroneous motions (see Figure 9). In general, the use of larger
contexts increases the recall rate, at the cost of higher computa-
tional time.

Comparing to Manual Correction Pipeline: To assess the per-
formance of our method in repairing erroneous motion, we asked
a motion capture expert to manually clean noisy raw markers data.
Then, we converted both the raw and the cleaned data to joint an-
gles. The motion generated using raw marker data was processed
using our method to detect and clean the erroneous parts. Figure 10
compares the MDM created by computing the difference between
the input motion and the corresponding manually cleaned motion,
and our MDM. The high values, which are correlated with erro-
neous motion, match on the two MDMs, demonstrating the accu-
racy of our method in correctly detecting erroneous joints. Fig-
ure 11 also shows a quantitative comparison between the joint
rotations of our automatic replacement method and the manually
cleaned joint rotations; it can be observed that our method signifi-
cantly improves the erroneous parts, and is very similar to the mo-
tion that has been manually corrected.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



A. Aristidou et al. / Self-similarity Analysis for Motion Capture Cleaning

Figure 10: The top image portrays a portion of the MDM generated
by our self-similarity algorithm, and the bottom image the MDM
created by computing the difference between the input motion and
its corresponding manually cleaned motion; it can be observed that
the high values match on the two images, demonstrating the accu-
racy of our method in detecting errors in joint rotations.

Figure 11: Comparison of the joint x and y-rotation values between
a motion that has been generated using raw motion capture data
(red), a motion that has been generated using markers after being
cleaned by a motion capture specialist (blue), and a motion that has
been processed by our method (green). Our method successfully
replaces the erroneous parts with joint rotations that match well to
the manually cleaned motion.

Distance Measure: To evaluate our distance measure, we com-
pared performance of our method using a time-warping version of
the Chai and Hodgins [CH05] distance metric to the one we use.
Chai and Hodgins select the closest KNN by computing a mixture
of features per pose that involves the joint’s Euclidean distance and
velocity. However, joints located at similar positions but with dif-
ferent rotations cannot be matched, returning higher error rates, es-
pecially at the end-effectors. For instance, in Figure 12, when Chai
and Hodgins distance metric was used, there are more false posi-
tives (e.g. at frames 200-220 and 280-300) compared to using our
distance measure. Our method’s recall and precision, in this exam-
ple, are 95.2% and 83.2%, respectively, while for Chai and Hod-
gins [CH05] measure, the rates are 86.7% and 81.9% (see Table 1).

6.1. User Study

To evaluate the impact of our movement digression-map in assist-
ing motion capture specialists, we have conducted two studies. In
the first study, five master degree students with a background in
animation were selected from the multimedia department. The par-
ticipants were provided with four motion streams of salsa dancing

Figure 12: The top image illustrates a sub-part of the MDM when
the closest KNN candidates are selected using our time-scale in-
variant motion similarity metric, whereas the bottom image shows
the MDM when Chai and Hodgins [CH05] method was used.
Higher values (hot colors) represent distinct motions to the mean-
motion-texture; in this example, Chai and Hodgins method has
higher false positives rates, wrongly detecting anomalies on the
right hand joint.

in pairs that comprise approximately the same number and types of
real errors. Two streams were provided with their MDM and two
without. Participants were asked to manually examine the motions
and find joint anomalies. We recorded the time needed to complete
the task, and the percentage of successful error detection. Without
the use of MDM, the students examined frame-by-frame, as well
as the x,y,z-rotation over time for all joints. In contrast, when the
MDM was provided, the participants just confirmed/rejected the
suggested erroneous areas, and then had a quick check on the rest
of the animation to see if there are other obvious anomalies. When
the MDM was used, participants spent 50% less time to detect the
errors. In addition, in the absence of the MDM, two students failed
to detect one (out of 15) short-duration error.

In the second study, we compared the amount of time it takes an
expert to detect and label errors in a motion capture sequence man-
ually, vs. using our MDM. We used two groups of 15 clips each
from the salsa motion capture data (CMU motion capture database:
subjects 60 and 61), where each group contains about the same
number of errors. The expert was asked to detect incorrect joint ro-
tations in the data. He received one group of data, and we recorded
the time to complete the task. Then, he received the second group
of data, but this time with the MDM of each sequence. The time
for tasks completion was recorded. The results show a drop from
60 minutes to 20 minutes indicating that a significant amount of
time can be saved.

6.2. Comparison with Other Methods

We compared our approach with other recent methods; we chose
methods that correct motion at the marker level, including matrix
factorization [BL16], and methods that work at the joint level, in-
cluding deep learning [HSKJ15], and sparse coding [FJX∗15]. The
experiments were implemented using data containing motion se-
quences of various locomotion (walk, run, jump), and dancing.
It can be observed that our method can detect joint anomalies
even in motion streams that have been previously reconstructed,
or denoised. Figure 13 shows an example where our method de-
tects errors on data that have been corrected using (a) Burke and
Lasenby [BL16] (shown in yellow), and (b) Feng et al. [FJX∗15]
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Figure 13: Top images show the reconstructed poses using (a)
Burke and Lasenby (yellow), and (b) Feng et al.(magenta), while
bottom images present the MDM after importing the reconstructed
motion into our framework, highlighting the joints with error. The
right image in each pair illustrates the reconstructed pose using
our method.

(shown in magenta). As can be seen, our method still finds joints
with erroneous rotations in the corrected sequences of previous
methods, and can correct them.

We compared our method to the method proposed by Gløersen
and Federolf [GF16]. The main limitations of this method is that
it only fills gaps of incomplete sequences, cannot treat errors due
to marker missing or mislabeled, and does not detect joint anoma-
lies in the reconstructed motion. Moreover, if gaps occur in several
markers of the same body segment at the same time, the method
cannot return good estimates because no inferred information from
neighboring markers can be retrieved. The method was tested using
contemporary and salsa dancing data. However, because the pro-
posed algorithm is designed based on the assumption that move-
ments are cyclic or repetitive, while dancing is dynamic and het-
erogenous, the reconstructed markers trajectories have discontinu-
ities, generating motion with abrupt changes and anomalies in joint
rotations (see the supplementary materials). In contrast, our method
is effective on non-repetitive and dynamic data.

The biggest advantage of our method compared to other alterna-
tives is its ability to detect the joints that contain errors, and repair
only those. In contrast, methods such as Holden et al. [HSKJ15]
and Feng et al. [FJX∗15] repair the global motion at once, smooth-
ing even the rotations of correct joints. This operation has the effect
of losing some of the details of the motion, changing the overall
posture of the performer, and removing nuance or style (see Fig-
ure 14 and the supplemental video, particularly the performers’
head and/or arms). Although is possible to avoid smoothing the full
motion by applying denoising on sub-groups, it is still necessary to
first detect the erroneous parts. Moreover, even though the filtering
and machine learning approaches are capable of smoothing erro-
neous motion, they have difficulties to refine motion in cases where
the joint rotation is plausible, but erroneous in the context of the
specific motion.

In an attempt to quantify the reconstruction quality, we have ar-
tificially introduced errors on a number of joints, reconstructed the
motion using our method and measured the difference between the
original, pu, and reconstructed, p̂u pose using Lee et al. [LCR∗02]

Figure 14: Motion reconstruction using different meth-
ods on contemporary dance and gymnastics. In con-
trast to Feng et al. [FJX∗15] (magenta character) and
Holden et al. [HSKJ15] (blue character), our method (green
character) detects the joint with anomalies (highlighted in red)
and repairs only the erroneous values. Other methods apply
smoothing to the whole motion, sometimes resulting in changes
of the character’s posture/style even at times with no error (top
image).

distance formula:

Error(pu, p̂u) =
m

∑
k=1
‖ log

(
q−1

uk q̂uk

)
‖2, (2)

where m is the number of joints. The errors are manually intro-
duced by perturbing the joint rotatations of the character imitat-
ing errors found in the dataset. Table 2 shows the performance
of the tested methods. Our method returns the smallest differ-
ence per frame to the original motion; because other methods
(Holden et al. [HSKJ15] and Feng et al. [FJX∗15]) include smooth-
ing that modifies the motion globally, while our method detects and
repairs only the erroneous joint rotations and frames. Furthermore,
our method returns the smallest error per joint for the erroneous
areas, and has the smallest maximum error among the methods
used in the experiment. Please refer to the accompanying video for
more examples, including dance data, locomotion and various other
movements.

7. Discussion

We have presented a method to automatically analyze motion cap-
ture sequences based on self-similarity. Our method can detect er-
rors in sequences of closely interacting performers as well as other
complex motions. We define motion-words consisting of short-
sequences of joints transformations, and use a time-scale invari-
ant similarity measure to compare words with their KNN. This ap-
proach allows the detection of abnormalities in the sequence as well
as suggesting possible corrections. The high detection rates, and the
ability to replace the erroneous parts with plausible motions, can
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 Error globally Error per joint 

 Average Maximum Average Maximum 

SSA (ours) 0.85 1.11 0.21 0.44 

Holden et al. 7.68 8.62 0.32 0.51 

Feng et al. 7.92 11.24 0.53 0.57 

Burke and Lasenby 4.55 6.76 2.50 3.75 

Gløersen and Federolf 5.03 7.85 2.88 4.21 

 
Table 2: The performance of the methods in repairing artificial er-
rors; our method returns the smallest difference per frame and per
joint to the original motion (at both mean and maximum values).

save considerable time and manual effort in creating clean motion
capture data.

Our method has some limitations. First, we can analyze and com-
pare only similar skeletons. The joints must have correspondences
in the same hierarchy so motion-words would correspond. Our self-
similarity analysis is also applicable for non-humanoid skeleton, if
there exists enough data in the corpus for analysis. In cases where
skeletons with different configurations are used, it could be possible
to use our method, if all motions in the dataset will be retargeted to
have a similar skeletal structure. Existing techniques for retargeting
could be used to adapt between skeletons if necessary.

Second, we focus on joint rotation errors and do not deal with
motion dynamics or bone-length violations. We also cannot detect
errors related to self-collision or contact failures. Third, a basic as-
sumption of our method is that there are similar segments of motion
in the dataset used. If we search only in a short sequence, then it
is not always possible to find close KNNs to generate a good mean
word. If we want to expand the search to other sequences, we need
to find similar motion capture sequences that are clean and correct,
which may not always be available. However, as our experiments
indicate, sometimes it is possible to use motions of similar, but not
exactly the same type.

To expand the search to really large datasets (assuming such
sets are available) some indexing or hashing scheme would have
to be employed. For example, a simpler distance measure between
motion-words can first be used to collect a candidates set of words,
and then our time-scale invariant distance using DTW can be used
to find the KNN from this set.

Self-similarity analysis can also fail to detect continuous (due
to bad capturing) or repetitive errors because such errors will be
considered common in the data. Finally, even though our method
can successfully detect long duration joint errors, it may encounter
difficulties in correcting them, especially for motions with extreme
pose violations. An example is depicted in Figure 15, where the er-
roneous joint rotations have been detected but the corrected motion
still looks unnatural.

Our method could be used for partial or full-body motion re-
trieval or motion editing, by allowing users to change the position
of the end effectors and then search in the database for similar ac-
tions to blend. Our analysis could also be used to characterize dif-
ferent motion types by finding similarities in the sequence level -

Figure 15: Our method can detect the errors in long erroneous
sequences but encounters difficulty in replacing them. In this pair
salsa dance example, the errors in the red character (the occlusion
was caused by the close interaction of its pair, the gray character)
are detected but the replaced motion (brown) still does not look
plausible.

measuring how close are two motions by measuring how common
words from one sequence are in the other.
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Appendix

Let us assume that the source motion word is of duration N, and
the target motion word is of duration M, where N ≤ M. The dis-
tance between a pair of frames (i, j), one from the source, and one
from the target, is measured using the pose-distance measure dist2

i j
in Eq. 1. This defines a distance-matrix D of size N×M. To se-
lect the optimal sequence SD ∈ {D}p of matches of length p, we
use a constrained-DTW algorithm [M0̈7]. The algorithm returns
the lowest cumulative cost under the following five constraints:
(a) boundary conditions: the sequence starts at the first frame,
i.e., SD(1) = (1,1), and stops when any of the two words reach
the end, i.e., SD(p) = (M, :) or SD(p) = (:,N); (b) monotonicity:
the sequence must be monotonically ordered with respect to time;
(c) continuity: adjacent elements in the sequence are confined to
neighboring matrix entries, SD(i + 1) ∈ {SD(i) + (1,0),SD(i) +
(0,1),SD(i) + (1,1)} for i ∈ 1, ..,N−1; (d) slope constraint: we
avoid excessively large movements in one direction by restricting

the movement in the same direction to maximum of 3 consecu-
tive steps; (e) width constraint: we ensure that the length of the
warping window is larger than 10 frames. A visual representation
is illustrated in figure 16.

Figure 16: Time-warped alignment of two walking sequences per-
formed at a different speed. An N×M distance matrix (darker is
smaller) is used by DTW to find the optimal sequence (in red).
In this example, the first 17 frames of the target motion-word (20
frames) are matched with 15 frames of the source motion-word.
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