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Abstract—This paper considers the problem of taking marker time centre of rotation (CoR) estimation, thereby producing
locations from optical motion capture data to identify and pa-  skeletal information for use in visual performance feedbac
rameterise the underlying human skeleton structure and mabn Experiments demonstrate that the method presented effec-
over time. It is concerned with real-time algorithms suitabde .. . . .
for use within a visual feedback system. A common problem “Ve'_y_ recovers, "? r_eal-tlme, a good _estlmate of the true
in motion capture is marker occlusion. Most current methods Positions of the missing markers, even if all the markers on a
are only useful for offline processing or become ineffectivevhen  limb are missing or occluded for a long period of time. This

a significant portion of markers are missing for a long periodof  thus enables continuous real-time CoR estimation.
time. This paper presents a prediction algorithm, using a Kéman

filter approach in combination with inferred information fr om II. RELATED WORK
neighbouring markers, to provide a continuous flow of data. he .
results are accurate and reliable even in cases where all miggrs A number of methods that can deal with the problem

on a limb are occluded, or one or two markers are not visible fo  of estimating the positions of missing markers have been
a large sequence of frames. Pre-defined models are not reqet proposed. However, the performance of many of these is
and skeleton fitting to this complete data can then be updated unsatisfactory when we have unusual motions or a high
in real-time. .

percentage of missing markers. Some commonly used methods
interpolate the data using linear or non-linear approagbiles
[6], [7]; this can produce accurate results, but is usefuy on

Markered optical motion capture is a technology used tB Post-processing. Another drawback of such methods is
turn multiple camera observations of a moving subject inhat they can effectively estimate the missing markers only
3d position and orientation information about that subjeck. they are missing for a short period of time, typically less
Such information can be used to analyse technique for spdf@n0.5 seconds. Some MoCap systems also provide missing
training [1], [2]; observe asymmetries and abnormalities fnarker recovery solutions using interpolation techniqires
rehabilitation medicine [3]; and generate virtual chagest combination with kinematic information, but again, these a
for films or computer games [4]. However, even with costl{ot real-time solutions.
professional systems, there are instances where the systelhijn and Mulder [8] proposed a novel model-based op-
returns no data due to the occlusion of markers by limpiécal tracking and estimation system for composite inteoac
bodies or other markers. Each marker must be visible to st leflevices. The proposed system automatically constructgehe
two cameras in each frame in order to unambiguously establRmetric skeleton structure, degrees of freedom (DOF)icelst
its position. Although many methods have been developed@gd DOF constraints between segments. The system supports
handle the missing marker problem, most of them are n¥ggments with only a single marker, so that interactionaevi
applicable in real-time and often require manual intericent Can be small with a low number of markers. However, it is an

This paper proposes a real-time approach for estimatif§f-line procedure and cannot be used in real-time apjpdinat
the position of occluded markers using previous positions Dorfmuller in [9] used an extended Kalman filter (EKF) to
and information inferred from an approximate rigid bodjpredict the missing markers using previously availablekewar
assumption. Without assuming any skeleton model, we tdmormgnon while Welch et al. in [10] used an EKF to resolve
advantage of the fact that for markers on a given limb Segmeﬂgclusmns based on the skeletal model of the tracked person

the intermarker distance is approximately constant. Tthes, Again, these methods require manual intervention or become
neighbouring marketsprovide us with useful information ineffective in cases where markers are missing for an ergnd

|I. INTRODUCTION

relevant to the current position of the non-visible markeitn ~ Period of time.

a continuous stream of accuraté data, we can perform real- Herda et al. in [11] used a post-processing approach to
increase the robustness of motion capture systems by using

INeighbouring markers are considered as markers belongiribet same a SOpl:]I_StI.C.ated human model. They _pl‘GdICt tfmelocanon
limb segment. and visibility of the markers using information from the



neighbouring markers that share kinematic relations with tadvantage of the approximation that all markers on a body
occluded markers, even if the markers are missing forsagment are attached to a rigid body.
long period of time. However, the skeleton information mu% The Kalman Filter
be known a priori in order to apply this method. [12] also" , ) ) ) )
takes advantage of the fact that the markers on a limb havel N® Kalman filter [18] is a tracking technique used in
fixed inter-marker pairwise distances. Thus, in the case BNy different areas: e.g. autonomous or assisted navigati
a missing marker, its position can be recovered through tijéractive computer graphics and motion prediction. The
distance constraints imposed by markers on the same lifi#inPlicity and robust nature of the filter make it popular and
This approach may become ineffective when all or a significaffactical for many prediction algorithms. o
number of markers are missing. Ringer and Lasenby [13] '€ Process model that updates Hee over time is given
also present an automatic method to identify indistingatists (iN its most general form) by (2), where the stateat time?
markers based on cliqiesHowever, this requires an off-line IS OPtained from the state at timie- 1;
procedure in order to determine marker cliques and paramete x¢ = Axp 1+ Bug+wig )
of the skeletal structure. Chai and Hodgins [14] present ah i . o ,
method that uses neighbouring markers to estimate thengiss\fv ereA is the state transmon mod_el which is apphgd to the
marker in the current frame. They propose a local linear thodfevious state, 1, B IS _the control input mOde!"t—l is the
from these neighbours and then reconstruct the full poskeeof f:ontrol ve<_:t0r_ andw;_y is th_e Process noisev IS assgmed
frame by conducting an optimisation in the space consteain®? be multivariate normz_;\I, with zero mean and covariagce
by the model. This method is very effective but the set of The measured daté, is related to the current state by
control signals, i.e. markers, and the skeleton infornmatiaist Z, = Hx;+v, (3)
be known beforehand. . . : ._Where H is the observation model andv; is the observation
Recently Liu and McMillan in [15], presented a piecewise . S .
linear approach to estimating human motions from a prgplse: also assumed multivariate normal with zero mean and
selected set of informative markengricipal markers). This covanancef_z. . . )
method allows markers to be missing for a considerable gerio The predicted statg; and its error; can be written as;
of time and is still able to recover positions using all of the y: = AXy_1 + Buy_q E, = AP, AT +Q (4)
_avallable data. However, |t_|s an off-lme mEthOd anq Wh"\efvherefc refers to theestimate and P is covariance of the state
it prpdu.ces reasonable estimates, is unsuitable for ieal-t estimate.
applications. TheKalman gain between actual and predicted observations
I1l. THE TRACKING METHOD IS:
A. Finding the Rotors and the CoR K, = EHT (HEH" +R)" (5)

Locating the CoRs is a crucial step in acquiring a skeletdrhus given an estimate,_; att— 1, the time update predicts
from raw motion capture data. The data in section IV ithe state value at time The measurement update then adjusts
acquired from an active marker system and therefore tlys prediction based on the newy. The estimate of the new
tracking is necessary. In order to calculate the CoR betwesiate given prediction and correction from observatioribés
two sets of markers and from this construct the human skele@ven by
model, it is helpful to have the rotation of a limb at any given f
time. We can estimate the orientation of a given limb at time X = Yo+ Ki(Ze— Hyy) ©)
relative to a reference frame using the well-knoRmocrustes ~ The Kalman gaink’; is chosen to minimise the steady-state

formulation [16]. covariance of the estimation error givéhand R. Finally, the
If we take a set of labelled points; and the same set of error covariance matrix of the updated estimate is;

p0|r_1ts _after an unknown rotauoR(t)_, Yis then_the problem P, = (I-K,H)E, @)

of finding the unknown rotor or unit quaternio®, can be ) . .

formulated as, Our goal is to build a model that predicts the current state
N using previous states. In this work, a constant velocity ehod

R — argmaxz (in}?) v, ) is used. Hence,

i=1 Yt = X¢—1+Xpadt (8)

where R defines the quaternion conjugate of the rafhyrand wherex; andx; are respectively the position and velocity of

n is the number of points. the marker in frame.

The location of the joints can be calculated using [17], Equation (4), which gives the predicted state, can be writte
which proposes a closed form sequential solution enabliilgmatrix form as;
real-time estimation of the CoRs. This approach takes full
ye| |1 dt| [x— ©)
Yt 0 1| %1

1The distance between each pair of markers in a clique is @ohst



i.e. we assume a simple model without any external controls x% is the position of the visible marken on the limb

or constraints thus enabling us to igndBeandu.

C. The Observation Vector

The observation vectorZ;, gives the observed position
of the tracked marker when this is available, otherwise
represents estimated position. The state vector repseteiet

in the current frame aniD;_le is as described above. In
this case, we are using the constant velocity assumption
as we cannot estimate the rotation.
~» When all markers on a limb are occluded the positions
It of the markers can be estimated using information only
from previous frames. The observation vect, in

position and velocity as given above. In order to cope with  this instance is calculated using a rotor/quaternion based
cases where markers are missing for long periods of time, method. This method assumes that the rotation of the
we implement a traCkeI’ that uses information not Only from markers between two Consecutive frames remains con-

the previous frames, but also from the current positions
neighbouring visible markers. We assume three markers

of stant. This is formulated ag!~ !t = R*=2!~1 = AR.
0N The observation vector is now equal to

each limb. In the presence of noise the observation vector is

updated as given below:
« Where all markers are visible on a given limb, then:

Zy = Hx; + vy (10)

Z, = HX' + v, (15)

where x! is the state vector containing the estimated
positionsx! = Rt~ 1xt—1Rt=2t-1,

wherex; is the current state of a tracked marker on the
limb. In this caseH is the identity andR is determined
empirically. Many factors contribute to marker noise
such as optical measurement noise, miscalibration of the
optical systems, reflection, motion of markers relative to
the skin and motion of the skin relative to the rigid body
(underlying bone).

In the case where two markers are visible on the limb,

Zt = H}A(ﬁ + v (11)

wherex! is the estimated position of the occluded marker ~ Framet — 1 Framet

mq in framet. X! can be calculated as given below, ) . .
L 1 9 Fig. 1. The observation vector in the case of 2 visible mark&he red dot,

Firstly we CalCUIateDET; and Dijgl which correspond . represents the average value as given in equation 12. Bem giot.x;
to the vectors between the occluded markar and the is the point on the intersection of the 2 spheres which isesibsox;.
visible markersns, ms in framet—1 respectively. These

vectors are given bP; ! = x/~! —x!~'. One obvious
way to proceed is to calculate the poi¢ which is an
average of the estimated positions in framasing the ~ The experiments were carried out using a 16 camera

IV. RESULTS ANDDISCUSSION

D vectors from frame — 1; Phasespace motion capture system [19]. The algorithm was
implemented in MATLAB and run on a Pentium IV PC.
o (oD (koD 1 The system can process up to _SEBQmes per second (using
X = 2 (12) MATLAB). Our datasets comprise both simulated and real-

where x! is the position of markeri in frame ¢. In data (i.e. captured data with natural occlusions or ocohssi

subsequent frames we can continue to use the fact t9gherated by artificial deletion) with more than 5@f#imes in
the inter-marker distance is approximately constant. VR&Ch- There are two categories: one with 7 segment leg dmtase
now improve on this estimate by finding the solution ofNd the other with 5 segment arm datasets. Jdigocation

the intersection of the two spheres in framaith centres of the markers can be reliably reconstructed even when we
xb, x4, and radii|D§31| and |Dt131 %t is assigned as have marker occlusion for more thano0 frames at a time,

the closest point on the circle of iﬁt}élr’sectionip Fig. returning position errors of less than 4mm from the true @alu

1 illustrates this process. The po_sition of the CQR can be calculated with an error_of
In the case of only one markem#) visible on a given approxmgtely 6.5mm in cases where one mar_ker on each limb
limb we again have; segment is occluded, this increases to 9mm in cases where 2

out of 3 markers on a limb are not visible. Table | presents the
average results in the case of one missing marker on each limb
Z; = HX§ + vy (13) segment and fig. 2 shows an example of the error variation over
where§<§- is the estimated position of the occluded markdlme due to occlusion. .
m; ( = 1,3) in framet. ’EE is given by: Thg proposed method operates by gxplom_ng the fact that
the distances between markers on a single limb segment are
x§ =xb— DE? (14) approximately constant. Thus, the positions of the visible



marker(s) can be used for updating the position of the tiicken each limb, and also when the limb rapidly changes direc-
marker, even if information on the occluded marker is absetin. Future work will introduce biomechanical constraitd

for a large period of time. Fig. 3 shows two examples of theestrict motions to those from a feasible set.

proposed algorithms applied to real data.

TABLE |
AVERAGE RESULTS(OVER 30 RUNS) ON REAL DATA WITH OCCLUSIONS \
GENERATED BY DELETIONS CASE OF ONE MISSING MARKER ON EACH l ‘\\
LIMB SEGMENT. / Vo
( - f
Number of frames Erromm) ~

Marker position error

Small occlusions 100 frames) 0.775145

Large occlusions1500 frames) 3.881497 Fig. 3. Two examples of a continuously reconstructed lowetybsequence
CoR error showing all markers and CoRs.

Small occlusions 100 frames) 0.945687

Large occlusions1(500 frames) 6.548336
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