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Abstract
Inverse kinematics (IK) is the use of kinematic equations to determine the joint parameters of a manipulator so that the end
effector moves to a desired position; IK can be applied in many areas, including robotics, engineering, computer graphics and
video games. In this survey, we present a comprehensive review of the IK problem and the solutions developed over the years
from the computer graphics point of view. The paper starts with the definition of forward and IK, their mathematical formulations
and explains how to distinguish the unsolvable cases, indicating when a solution is available. The IK literature in this report is
divided into four main categories: the analytical, the numerical, the data-driven and the hybrid methods. A timeline illustrating
key methods is presented, explaining how the IK approaches have progressed over the years. The most popular IK methods
are discussed with regard to their performance, computational cost and the smoothness of their resulting postures, while we
suggest which IK family of solvers is best suited for particular problems. Finally, we indicate the limitations of the current IK
methodologies and propose future research directions.
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1. Introduction

Kinematics describes the rotational and translational motion of
points, bodies (objects) and systems of bodies (groups of objects)
without consideration of what causes the motion or any reference
to mass, force or torque. Inverse kinematics (IK) was initiated in
robotics as the problem of moving a redundant kinematic arm with
specific degrees of freedom (DoFs) to a pre-defined target. Beyond
its use in robotics, IK has found applications in computer graph-
ics, generating particular interest in the field of animating articu-
lated subjects. This survey focuses on IK applications in computer
graphics, aiming to provide insights about IK to young researchers
by introducing the mathematical problem, and surveying the most
popular techniques that tackle the problem.

Computer graphics applications usually deal with articulated fig-
ures, which are convenient models for humans, animals or other
legged virtual creatures from films and video games. Animating
such articulated characters is a challenging problem. Most vir-

tual character models are complicated, made up of many joints,
thus having a high number of DoFs. In addition, they are re-
quired to satisfy numerous constraints, including joint and/or contact
restrictions. One way to handle this complexity is to manually adjust
all the DoFs by carefully modifying the joint rotations to achieve
the desired pose and ensure their temporal coherence—an extremely
complex and time-consuming process.

Therefore, it was a necessity to find efficient ways to manipulate
systems consisting of complex and multi-link models. IK has be-
come one of the fundamental techniques for editing motion data. IK
is commonly used for animating articulated figures using only the
desired positions (and sometimes the orientations) of certain joints,
commonly referred to as end effectors (e.g. usually end effectors
are control points, and can be either end joints, such as feet and
hands, or inner joints, such as the elbow and knee). The end effector
positions are usually specified by the animator or a motion capture
system, and must reach the desired positions in order to accomplish
the given task. The remaining DoFs of the articulated model are
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automatically determined according to different criteria that depend
on the employed IK solver and the model constraints. This can save
a lot of work for the animator, while still maintaining fine control
and temporal coherence.

The end effector positions can be modelled as a function of the
DoFs, leading to a formal definition of the IK problem as finding
θ in s = f (θ ), where θ is the column vector giving the DoFs, and
s is a vector that gathers all the desired end effector positions. This
problem is highly under-constrained as θ usually has a much larger
dimension than s. In addition, it is a non-linear problem as f involves
complex combinations of trigonometric functions. The efficiency
and effectiveness of the IK solver is generally measured in terms
of the smoothness of the produced motion,1 its scalability and the
computational cost required for the resulting pose. The scalability
trades computational time with the ability to address increasingly
difficult constraints or kinematic chains with a large number of joints
and DoFs.

The IK problem has attracted the attention of scholars for many
years. There are many tasks in applications of virtual humanoids
that need realistic postures and motions, including character re-
targeting [Gle98, MBBT00, HRE*08], skeleton control [SLSG01,
ACL16], solving foot skating [KSG02, MK11] and ergonomic eval-
uation [Wan99]. Further investigation is needed to advance the cur-
rent state-of-the-art IK solvers, including the improvement of their
computational performance, avoidance of deadlock situations or
singularity problems, production of smooth transitions without os-
cillations, support of anthropometric and contact constraints, as well
as enhancements to applications, such as obstacle avoidance, style
modification, motion re-targeting, motion control, etc.

This report presents the most popular techniques for solving the
IK problem in an interactive and/or intuitive fashion for the design,
control and manipulation of articulated figures. Its purpose is to illus-
trate the evolution of IK in computer graphics, where the research
has been focused in the past, and how it has progressed over the
years. Over the past decade, there have been a few papers surveying
IK; Boulic and Mas [BM96] studied motion control and reviewed
the properties and limitations of IK compared to other techniques,
while later Boulic and Kulpa [BK07] presented a tutorial in Eu-
rographics 2007 on IK for virtual humanoids, focusing on pseudo-
inverse methods with priorities and their hybrid method. Some other
surveys focus on more specific aspects of IK, such as Colomè and
Torras [CT12] work on redundant IK solvers, Buss’s [Bus09] analyt-
ical review on Jacobian-based solvers and Henrich et al. [HKW97]
survey on parallel computation of robot kinematics.

We present a comprehensive review of IK solvers, which goes be-
yond the previous surveys, including recent solvers and new trends.
The solvers presented here are divided into four main categories:
the Analytic family (Section 4), the Numerical family (Section 5),
Data-driven methods (Section 6) and the Hybrid family of solvers
(Section 7). It also highlights the advantages and disadvantages of
each family of methods with regard to convergence, singularity han-
dling, support of joint constraints, the capability of reaching multiple

1For many solvers, the resulting motion, and therefore the associated smooth-
ness, is simply that which results from convergence of the algorithm under
a given set of constraints.

tasks, computational cost, scalability and smoothness of motion. In
addition, it provides indications on which IK solvers are the best for
solving different goals/problems, while directions for future work
and applications are provided, giving insights to where effort should
be placed to advance the current solvers.

2. The Articulated Body Model

A rigid multi-body system consists of a set of rigid objects, called
links, connected together by joints. Most models assume that body
parts are rigid, although this is just an assumption approximating
reality. A joint is the component concerned with motion; it permits
some degree of relative motion between the connected links. The
skeletal structure is usually modelled as a hierarchy of links con-
nected by joints, each defined by their length, shape, volume and
mass properties. A posture is defined as the skeletal configuration
of a figure. A realistic posture must satisfy a set of criteria. First,
the joints of all character models have natural articulation limits.
Second, inter-penetration of body parts with themselves or with
other objects is not permitted. In addition, physical laws should be
considered as external factors. Virtual body modelling is important
for posture control; a well-constrained model can restrict postures
to a feasible set, therefore allowing a more realistic motion.

A skeletal configuration is usually separated into chains such
as a robot arm or an animated graphics character leg. Each chain
is a sequence of rigid links connected to each other at their ends
by rotating joints. Any translation and/or rotation of the ith joint
affects the translation and rotation of any joint placed later in the
chain. Chains can be formalized as follows: all links with no children
are marked as end links; a chain can be built for each end link by
moving back through the skeleton, going from child to parent, until
the root (the start of the chain) is reached. Each root can be the
starting point of multiple chains.

2.1. Motion

Once a body model has been defined, it can then be animated,
manipulated or used for simulation purposes. Motion is the change
in position of an object with respect to a reference. The movement
and position of some specific joints in the skeleton are of more
interest than others. For example, the position of the grabbing end
of a robotic arm or the position of the legs in a walking character.
These are designated as the end effectors. Motion of a body can be
obtained using kinematics in two ways.

� Forward Kinematics (FK) can be defined as the problem of lo-
cating the end effectors’ positions after applying known trans-
formations to the chain. In this case, the joint angles and the link
lengths are known and given.

� IK is the problem of determining an appropriate joint configura-
tion for which the end effectors move to desired target positions,
as rapidly, and accurately as possible.

The input to the FK problem are the joint angles of all joints.
The FK problem has a unique solution, and its success depends on
whether the joints are allowed to perform the desired transforma-
tions. The input to an IK problem is a set of specified positions and
orientations for the end effectors, called targets; each end effector
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is assigned a different target, but under certain circumstances, they
can coincide. A solution to the IK problem is a joint configuration of
the full skeleton that allows the end effectors to reach their targets.
By definition, the root joint is assumed to be fixed, but methods can
also cope with translation of the root.

In contrast to FK, IK may have multiple solutions (which is the
most common case), a unique solution or no solution. The number
of available solutions depends on the target(s) position(s) and/or
the DoFs of the kinematic chain. For example, a target may be
unreachable when it is located further than the chain can reach, or
can be at a point where no pivoting of links can bend the chain to
reach the target(s). Another example is when two or more targets for
chains conflict and cannot be satisfied simultaneously. IK problems
with unreachable targets are known as over-constrained problems.
When a target is reachable, multiple solutions may exist for a two
or more links chain. This makes the IK problem under-constrained
(or redundant)—it may have an infinite number of solutions that
satisfy the desired target. For instance, using the human skeleton
with (at least) 70 DoF, any of its end effectors can reach a desired
target in multiple ways, resulting in many different possible poses.
It is up to the user to choose the most appropriate IK solver for the
given application, which may depend on many criteria, including
the smoothness of the given solution, and the computational cost of
choosing that solution.

There are many factors to take into consideration and decide
which is the best posture (solution) for an IK solver. Usually, it is
desirable to move in a straight line between the end effector and
the target positions when the motion of the kinematic chain requires
large changes in energy and momentum; however, continuous speed
curves can also be used for linking positions (on expensive profes-
sional robotic arms, there is an option to choose how to go between
the two points). Certain joint or model limitations must be satisfied
so that the final joint configuration is within a feasible set of poses.
It is important to note that the naturalness of the human movement
can be evaluated based on observation of natural human movements
or neurophysiological experiments. The smoothness of the motion
produced, as well as the temporal coherency, is another important
factor for evaluating the IK solution. Nevertheless, what is natural
is subjective and varies based on the problem and/or the kinematic
chain that is moved.

2.2. Reachable and non-reachable targets

There are instances when a solution to the IK problem does not
exist due to an unreachable target. The space of targets that the
end effector can reach is called reachable workspace (in robotics,
the space in which the robot can generate velocities that span the
complete tangent space at that point is known as dexterous space).
It is important to check whether a target is within reach or not, as
a significant amount of processing time can be saved if we avoid
searching for a solution that does not exist.

In cases where joint constraints and target orientations are not
taken into account, a simple reachability check can be applied
as follows: let the distance between the (sub-)root2 and the tar-

2Sub-roots are joints that connect two or more kinematic chains.

Figure 1: The reachable and unreachable cases of the IK problem.
The target is unreachable if the distance between the target and the
base d is larger than the total sum of all inter-joint distances d >∑n−1

i=1 di or smaller than d < d1 −∑n−1
i=2 di . The reachable bounds

are shaded in green, while the unreachable cases are outside the
outer circle or inside the inner circle shaded in red.

get be d; if this distance is larger than the total sum of all the
inter-joint distances, i.e. if d >

∑n−1
i=1 di , where di = |pi+1 − pi |, for

i = 1, . . . , n − 1, and pi is the position of the ith joint of the kine-
matic chain, the target is unreachable. In the case that the distance is
smaller, it is necessary first to evaluate whether the kinematic chain
can bend enough to reach the target, before deciding that it is within
the reachable bounds. Such a case occurs when the kinematic chain
consists of a link with size dmax that is larger than the sum of all the
remaining links dmax >

∑n−1
i=1 di − dmax and the target is located at

a distance d < dmax −∑n−1
i=1 di from the root. This is illustrated in

Figure 1, where a solution cannot be formed if the target is either
inside the inner circle of radius d1 − (d2 + d3), or outside the outer
circle of radius d1 + d2 + d3. Note that the aforementioned formal-
ization is also valid when end effectors are taken to be inner joints
(a joint in the chain).

The problem of identifying the reachable workspace for an n-link
chain (where n > 3) with rotational and translational constraints can
become challenging. Further investigations are needed to find meth-
ods to determine a priori if the target is within reaching bounds and
whether optimization procedures can be applied. Thus, to avoid
cases where the iterative process enters an endless loop, it is ad-
visable to add termination conditions even when a solution is not
reached. One termination condition could depend on the difference
between the position of the end effector at the previous and current
iteration; if this difference is less than an indicated tolerance, the IK
solver should terminate. In addition, if the number of iterations has
exceeded a specified limit, the algorithm should terminate.

3. Formulation of Inverse Kinematics

There are many different joint types that deal with different motion
properties, e.g. rotational, translational, etc. A more detailed de-
scription of various joint types is given in Section 8. A multi-body
model, such as a humanoid, consists of many interconnected joints.

Let θ1, . . . , θn be the scalars which describe the complete joint
configuration of the multi-body, where n is the number of joints.
Each θj value is called a joint angle, and represents the angle in
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the plane of rotation, assuming the rotation axis is known (note
that angle joints are just one way to describe a joint configuration).
Certain points on the kinematic chain, not necessarily located at the
end of the chain, are defined as end effectors, and the input to the IK
problem are the target positions (and possibly orientation) of these
end effectors.

In order to solve the IK problem, the joint angles must be set
so that the resulting configuration moves each end effector as close
as possible to its target position. Let the end effectors’ positions
be denoted as s1, . . . , sk , where k is the number of end effectors.
Each si can be expressed as a function of the joint angles. The
vector s = (s1, s2, . . . , sk)T can be viewed as a column vector either
with m = 3k scalar entries or with k entries from R

3. The target
positions, one for each end effector, are defined by a vector t =
(t1, t2, . . . , tk)T , where ti is the target position for the ith end effector.
Finally, the desired change in position of the ith end effector is
given by ei = ti − si ; this equation can be equally formatted as
e = t − s. The raw potential change defined by e is guiding the
convergence, but its amplitude might be clamped to account for the
validity domain of some IK methods (e.g. Jacobian, heuristic).

Given a set of joint angles in the form of a column vector
θ = (θ1, . . . , θn)T , the end effector positions can be expressed as
functions of the joint angles:

s = f (θ ), (1)

or, for i = 1, . . . , k, si = fi(θ ). This is called the FK solution.

On the other hand, the goal of IK is to find a vector θ such that s
is equal to a given desired configuration sd :

θ = f −1(sd ), (2)

where f is a highly non-linear operator which is difficult to invert.
There are multiple possible solutions for θ and we want one that
gives us the pose that returns the smoothest motion. Aside from that,
we want the solution θ to be stable, meaning that we prefer a solution
that when the end effectors’ position and orientation slightly change,
the configuration of the chain θ will also only exhibit a small change.

4. Analytic Solutions

Analytical methods are the first family of IK solvers discussed in
this paper. They are meant to find all possible solutions as a function
of the lengths of the mechanism, its starting posture and the rotation
constraints, but usually are built upon some assumptions to compute
just a single solution. The simplest non-trivial manipulator is the
planar two-link manipulator; when the chain consists of such a small
number of joints, the solution, θ , can be computed analytically by
trying out all possible ways in which the links can be placed.

Let the two links of the chain have lengths l1 and l2 and the
coordinate (x, y) be the target position; for simplicity it is assumed
that the target is within the reachable bounds of the chain. Looking at
Figure 2, it is obvious that there are two possible configurations with
the end effector reaching the target position (x, y); in this survey,
only the rotation angles of the upper solution are calculated as an
example of implementation. The relative rotation angles are denoted
by θ1 and θ2; since the lengths of the two links l1 and l2 are known,

Figure 2: Analytic solution of a two-link kinematic chain; the pre-
sented manipulator may have two possible solutions.

as well as the desired end effector position, the joint angles can be
determined as:

θ1 = cos−1

(
l2
1 + x2 + y2 − l2

2

2l1
√

x2 + y2

)
(3)

and

θ2 = cos−1

(
l2
1 + l2

2 − (x2 + y2)

2l1l2

)
. (4)

Obviously, the calculation of the relative joint angles to find a so-
lution becomes harder when the chain is larger. In addition, it is
hard to find a convenient way to define which of the different so-
lutions should be chosen. One constraint will be that for a smooth
motion we desire the solution θ to be stable. Clearly, when we
move from planar to three-dimensional space, more solutions will
be available and the calculations will become correspondingly more
difficult.

There are numerous papers that deal with analytical IK solutions
in robotics, solving general 6R manipulators3 [RR93, MC94] or
multi-body mechanisms [PSM88, GORH05]. A review of analytical
methods is given in Craig’s book [Cra03]. IKFast [Dia10] is a tool
that solves robot IK equations in an analytic form, deploying motion
planning algorithms in real-world robotics applications. Analytic so-
lutions have also been used to animate anthropomorphic limbs, such
as the method presented by Korein [Kor85] to manipulate human
arms and legs, or the method developed by Tolani et al. [TGB00],
which used the swivel representation to form an analytic solution of
human limbs. Kallmann [Kal08] revised the formulation described
in Tolani et al. using quaternion algebra, extending the method to
automatically determine swivel angles. More recently, Molla and
Boulic [MB13] proposed a middle-axis-rotation parameterization
of human limbs to deal with ill-conditioned cases that happen due
to the swivel representation; thus, rather than projecting onto a fixed
vector that may result in large deviation in the swivel angle, the
authors define a reference coordinate system by decomposing the
rotation in a manner which avoids singularities.

The analytical IK solutions usually do not suffer from singularity
problems, they offer a global solution, and they are reliable, which
is the main reason why they are exploited in robotics. In addition,
closed-form solutions are preferred for motion planning due to their
low computational cost. Numerical and/or iterative IK solvers are

3A general 6R manipulator has six rotary DoFs.
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much slower, while planners (IK solvers) are required to process
thousands of configurations per second. However, the non-linear
nature of the kinematic equations and their lack of scalability make
them less suitable for redundant systems, they often fall into local
minima, and (in their simple form) they cannot handle prioritized
constraints. They are mainly used for mechanisms with low DoF, and
are not scalable enough to meet the demands of modern computer-
based IK problems. For instance, even in well-behaved situations,
a closed-form equation cannot generally be achieved for the full
human body, which has approximately 70 DoF. In this manner,
scholars search for alternative methods to iteratively approximate
a good solution to the problem; such methods are presented in the
next section and are based on a numerical approximation of the
non-linear problem.

5. Numerical Solutions

Numerical methods cover those that require a set of iterations to
achieve a satisfactory solution. The iterative methods formulate
the problem using a cost function to be minimized. The numerical
family of methods can be generally divided into three categories:
Jacobian, Newton and Heuristic methods.

5.1. Jacobian inverse methods

The Jacobian J is a matrix of partial derivatives of the entire
chain system with respect to the angle parameters, θ . The Jacobian
solutions offer a linear approximation to the IK problem (see
Figure 3). An excellent review of the Jacobian methods is given by
Buss in [Bus09]. For convenience, the introduction of the Jacobian
solutions in this survey follows the work of Buss and will use the
same notation.

The Jacobian methods iteratively solve the IK problem by repeat-
edly changing the configuration of a complete chain such that it
brings the end effector position and orientation closer, at each step,
to a target position and orientation. Differentiation of Equation (3)
gives the forward dynamics equation (where over-dot denotes the
time derivative)

ṡ = J (θ )θ̇ . (5)

Figure 3: The Jacobian solution is a linear approximation of the
actual motion of the kinematic chain.

The Jacobian matrix J can be described as a function of the θ values
and is given by

J (θ )ij =
(

∂si

∂θj

)
, (6)

where i = 1, . . . , k and j = 1, . . . , n (where k is the number of end
effectors, and n is the number of joints). Thus, J would be a k × n

matrix with vector entries. In practice, this would be converted to a
3k × n matrix of scalar entries. Following the notation of Buss, we
can calculate the entries of J using quantities vj , which are the unit
vectors pointing along the rotation axis of the j th joint:

∂si

∂θj

= vj × (si − pj ), (7)

where pj is the position of the joint.

Now, suppose the target position for end effector i is ti , we then
attempt to find the values, θ , which minimize the errors, ei , between
the actual end effector positions and the target positions:

ei = ti − si(θ ). (8)

To do this, we make a small change, �θ , in the joint angles and
approximate the consequent change in end effector positions as

�s ≈ J�θ . (9)

J can be calculated from the current values of s and θ . Since we
are looking for a value of �s which is as close as possible to the
error e (the error term e should be clamped to avoid instabilities in
convergence), we can estimate the change in θ to be �θ ≈ J −1e.

However, J may be neither square nor invertible, and, in addition,
can suffer from singularity problems.4 We note here that the Jaco-
bian considers the influence of each joint independently of other
joints (it is a first-order approximation)—when one joint changes,
all its children segments are viewed as a single rigid body. Various
methods have been proposed over time that differ in terms of the
approximations used to solve the IK problem, aiming to avoid sin-
gularity problems, and improve both the convergence and stability
of the solution. Some methods focus more on local modification of
the inverse differential kinematic mapping, which is ill-conditioned
near singularities, by suitably-defined mappings relating the task-
space to the joint-space, while others target smoothing of the overall
motion [SK16]. Next, we summarize these techniques.

5.1.1. Jacobian transpose

The Jacobian transpose ensures that it is invertible, using the trans-
pose instead of its inverse. Hence,

�θ = αJ T e, (10)

for some appropriate scalar α that can be calculated as

α = 〈e, JJ T e〉
〈JJ T e, JJ T e〉 . (11)

where 〈a, b〉 indicates the dot product between vectors a and b.

4Singularities occur when no change in joint angle can achieve a desired
change in a chain’s end position.
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The Jacobian transpose method is not ill-defined near a geometric
singularity, but it requires many iterations to converge. It is impor-
tant to note that it is possible to verify whether there are singularity
issues by determining if the Jacobian matrix has a zero row. The
unnatural results of the Jacobian transpose have also been observed
in [UPBS08], where the authors observed jerky movements, result-
ing in poor poses especially in cases where there is a significant
difference between the end effector positions and the targets. In ad-
dition, the transpose approximation does not consider the relative
contribution of joint variables and does not support strict priorities
among constrained dimensions. Note also that α should be small
due to the non-linearity of the direct kinematics model; otherwise,
oscillations and discontinuities may appear.

5.1.2. Jacobian pseudo-inverse

The Jacobian pseudo-inverse, also known as the Moore–Penrose
inverse of the Jacobian, sets �θ = J †e, where J † is an n × m matrix
and is called the pseudo-inverse of J . The main advantage of the
pseudo-inverse is that it is defined for all matrices J , even ones
which are not square or not of full rank. The pseudo-inverse has the
property that the matrix (I − J †J ) performs a projection onto the
null space of J .

The Jacobian pseudo-inverse is computed as

�θ = J T (JJ T )−1e. (12)

Another formula to estimate the pseudo-inverse when J is not full
rank is given in [Bus03]. Several authors have used the null space
method to help avoid singular configurations, such as Liegeois
in [Lie77] and Maciejewski and Klein in [MK85]. In addition, Gi-
rard and Maciejewski [GM85] used the Jacobian pseudo-inverse to
address the locomotion of a legged figure. However, the Jacobian
pseudo-inverse is not free from drawbacks; for instance, when the
configuration of a chain is close to a singularity, then the pseudo-
inverse method will lead to very large changes in joint angles, while
the movement to the target might be very small, resulting in oscil-
lations and discontinuities in motion.

5.1.3. Damped least squares

Another variation of the Jacobian is the damped least squares (DLS)
method, also known as the Levenberg–Marquardt algorithm, which
was first used for IK by Wampler in [Wam86] and Nakamura and
Hanafusa in [NH86]. Using DLS �θ is stabilized, avoiding many of
the pseudo-inverse method’s problems with singularities. The DLS
solution can be expressed as

�θ = J T (JJ T + λ2I )−1e, (13)

where λ ∈ R is a non-zero damping constant. The damping con-
stant must be chosen carefully in order to make Equation (13) nu-
merically stable. Buss and Kim [BK05] observed that DLS works
better than the pseudo-inverse and transpose methods. However,
its superior behaviour is subject to the damping constant λ. A
large damping constant makes the solutions for �θ well behaved
near singularities, but also lowers the convergence rate, reduces

the accuracy in tracking the targets and generates oscillation and
shaking.

5.1.4. Singular value decomposition

The presence of singularities considerably complicates the Jacobian
inversion process. For this purpose, the singular value decomposi-
tion (SVD) has been proposed as another variation of the Jacobian
method that utilizes the pseudo-inverse matrix [PTWF92]. SVD is
particularly useful since it provides orthonormal bases for the fun-
damental subspaces of a matrix. Formally, the SVD of an m × n

Jacobian matrix J is a factorization of the form J = UDV T , where
U is an m × m unitary orthogonal matrix, D is an m × n rectangular
diagonal matrix with nonnegative real numbers on the diagonal and
V T (the transpose of V ) is an n × n unitary orthogonal matrix. The
diagonal entries of the D matrix σi = dii are known as the singular
values of J . Note that σi may be zero, and the rank of J is equal to
the largest value r such that σr �= 0, while σr = 0 when i > r .

The Jacobian pseudo-inverse can be expressed using the SVD as
J † = V D†UT . In particular, the pseudo-inverse J † is given by

J † =
r∑

i=1

σ−1
i viuT

i . (14)

Colomè and Torras [CT12] proposed a singular value filtering
(SVF) approach, which is an alternative way of filtering the Jacobian
matrix so that it is always a full-rank matrix; the new alternative
pseudo-inverse has lower-bounded singular values and tends to J †

when its singular values move away from 0.

5.1.5. Pseudo-inverse damped least squares

The pseudo-inverse DLS method is an extension of the DLS method
that uses the SVD under the DLS method [Mac90], [PTWF92].
Thus, it can be expressed as

J T (JJ T + λ2I )−1 =
r∑

i=1

σi

σ 2
i + λ2

viuT
i . (15)

The pseudo-inverse DLS method performs similarly to the simple
pseudo-inverse when away from singularities, but smooths out the
performance in areas near singularities. More specifically, the Jaco-
bian in both methods is inverted by an expression

∑n

i=1 τiviuT
i .

However, in the pseudo-inverse DLS case, τi = σi/(σ 2
i + λ2),

whereas for the simple pseudo-inverse method, τi = σ−1
i , which

makes it unstable as σi approaches zero.

5.1.6. Selectively damped least squares

The selectively SDLS method was presented by Buss and Kim
in [BK05] and is an extension of the pseudo-inverse DLS method.
SDLS adjusts the damping factor separately for each singular vector
of the Jacobian SVD based on the difficulty of reaching the target
positions. The damping constants of SDLS depend not only on the
current configuration of the articulated multi-body, but also on the
relative positions of the end effector and the target position. SDLS
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needs fewer iterations to converge, does not require ad hoc damping
constants and returns the best results in terms of lack of oscilla-
tions. Buss and Kim [BK05] showed that it performs better than
any other inverse Jacobian method, with its drawback being that it
has high computational cost (it has the slowest performance time
among all Jacobian methods) due to the SVD computation. Ben-
salah et al. [BGQHA13] has recently extended the SDLS method
for the calculation of the IK of anthropomorphic robotic hands.
They attempt to reduce the high cost of the original method, which
arises from computing the SVD of the extended Jacobian matrix,
by computing only the relevant smallest singular values and cor-
responding vectors. They associate a specific damping factor for
each estimated singular value and calculate the joint angles using
Cholesky decomposition.

5.1.7. Other Jacobian solutions

There are various methods that use Jacobian alternatives to solve
the IK problem (e.g. [WW92, ZB94]). For instance, Kenwright
in [Ken12b] employed the Gauss–Seidel algorithm to solve charac-
ter IK problems. The author constructed a Jacobian matrix with a
linear equation format, �s ≈ J�θ , and estimated the unknown �θ

using the Gauss–Seidel iterative method; J = J T J + δI , where
the damping value δI was incorporated to prevent singularities
and make the final method more stable and robust. Meredith
and Maddock [MM04] demonstrate how a ‘half-Jacobian’ alter-
native can be used instead of the full Jacobian solution, result-
ing in reduced computational cost when applying IK in articulated
characters.

Baillieul in [Bai85] proposed the extended Jacobian technique,
which adds additional rows to the Jacobian. Khatib [Kha87], as
well as Orin and Schrader [OS84], computed a first-order Jacobian
matrix for the robot, which maps joint velocities into task space
velocities, and inverted this to map the error into a joint state up-
date. Another Jacobian alternative technique has been proposed by
Boulic et al. [BMT95], where the range of IK has been extended by
integrating the mass distribution information to control the position
of the centre of gravity of articulated figures.

Most numerical methods can be further strengthened by im-
posing priorities for the proper implementation of specific con-
straints [NHY87]; see also the concept of a pin-and-drag inter-
face [YN03]. Taking into account that the human structure is highly
redundant, leading to conflicts between multiple tasks, Siciliano
and Slotine [SS91] formulated the general multiple priority DLS
framework to avoid such conflicts between tasks. Similarly, Choi
and Ko [CK99] presented the online motion re-targetting (OMR)
method based on the Jacobian pseudo-inverse; they used two lev-
els of priorities to control the posture of humanoids and cope with
multiple end effectors. Baerlocher and Boulic [BB98] proposed
the Augmented Jacobian to solve the IK problem with priorities
(again for two levels), that was later extended, in a scheme called
Prioritized IK (PIK), to deal with full-body manipulation [BB04].
PIK allows constraints to be associated with a priority level in order
to enforce important properties first. The task-based Jacobian and
its null space projection operators can handle kinematic problems
with multiple-priority levels and with highly redundant structures.
However, the simple inversion of the Jacobian does not take into

account unilateral constraints, such as the joint range, velocity and
acceleration limits.

In [Pec08], Pechev introduced the feedback IK (FIK) method,
which solves the IK problem from a control prospective, minimizing
the difference between demanded and actual Cartesian velocities.
Within the feedback loop, the required joint parameters are de-
rived through a control sensitivity function. The algorithm operates
as a filter and does not require matrix manipulations (e.g. inver-
sion). Singularities are handled without the necessity of a damping
factor and this makes it computationally more efficient than pseudo-
inverse-based methods. The author also describes how manipulator
constraints can be applied, weighting both joints and end effectors
to a more feasible set of postures. As with the other Jacobian-
based algorithms, it can easily handle problems with multiple end
effectors.

5.1.8. Incorporating constraints

Implementing constraints in the Jacobian family of methods, so as
to improve the performance and increase the realism of the recon-
structed pose, is not straightforward. Some effort has been made
over the years to deal with joint limitations. For instance, a sim-
ple projection of the unconstrained solution onto a feasible pos-
ture has been proposed by Welman in [Wel93]. However, it is not
guaranteed that the result will lie close to an optimal solution. A
penalty-based method adding movement restrictions is presented
by Fêdor in [F0̂3], with the drawback that this often converges to
poor results. Some other popular methods to control the kinematic
chain under joint constraints are task-priority [NHY87, SS91] and
the null space projection of the Jacobian [CD95, DVS01, CW93].
Several optimizations have been proposed, especially in the robotics
domain, such as Kanoun et al. [KLW11], the SNS (saturation in the
null space) [FDLK12] and IKTC (IK with task corrections) [KO13]
methods. These approaches generally discard the use of joints that
exceed their motion bounds when using the minimum norm solu-
tion, reintroducing them in a suitable null space.

The simplest way of incorporating constraints can be achieved
by weighting the moves of the individual joints, as proposed by
Meredith and Maddock in [MM05]. Their technique provides the
ability to predictably modify how much different DoFs change when
configuring a posture using the equation �θ = WJ −1e, where W
is a weighting vector that contains values between 0 and 1. Finally,
Kenwright [Ken13] incorporated joint limits by modifying the up-
date scheme to include an iterative projection technique, named
projected Gauss–Seidel; the angular limits form bounds that are
enforced through clamping. More details about joint and model
restrictions are given in Section 8.

5.2. Newton methods

The Newton methods are based on a second-order Taylor expansion
of the objective function f (x + σ )

f (x + σ ) ≈ f (x) + [∇f (x)]T σ + 1

2
σT Hf (x)σ, (16)

where f (x + σ ) are the desired joint parameters, f (x) are the cur-
rent joint parameters, σ is the required modification so that f (x)
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will satisfy f (x + σ ) and Hf (x) is the Hessian matrix. In contrast to
the Jacobian methods, here the solution is found as a second-order
approximation of the function f (x + σ ) using the quasi-Newton
method, as described by Nocedal and Wright in [NW99]. In this
way, the singularity problems of the Jacobian matrices are avoided.
The search direction pN

k is found by solving the equation:

pN
k = ∇2f −1

k ∇fk, (17)

where ∇2f −1
k is the inverted Hessian matrix and ∇fk is the gradient

of the objective function given by:

∇fk = J (e − g), (18)

where e is the end effector position and g is the goal position.
However, the calculation of the Hessian matrix is very complex and
results in high computational cost for each iteration. Hence, sev-
eral approaches have been proposed which, instead of calculating
the Hessian matrix, use an approximation of the Hessian based on
a function gradient value. The most well-known methods are the
Broyden’s method, the Powell’s method and the Siciliano’s method,
as well as the Broyden, Fletcher, Goldfarb and Shanno (BFGS)
method [Fle87, Sic90, CvKM97]. For instance, BFGS uses the fol-
lowing formula to obtain an estimate of the Hessian:

Bi+1 = Bi − Bisis
T
i Bi

sT − iBisi

+ gig
T
i

gT
i si

, (19)

where i denotes the present iteration, si = xi+1 − xi , gi =
∇f (xi+1) − ∇f (xi), and B is a positive definite approximation of
the Hessian.

Since the Newton methods are posed as a minimization problem,
they return smooth motion without erratic discontinuities. It is also
straightforward to incorporate joint restrictions. The most obvious
method for constraints is the gradient projection method proposed
by Zhao and Badler in [ZB94]; they propose a search for a plausible
solution by solving a constrained non-linear optimization process.
In addition, Rose et al. [RGBC96] extended the constrained non-
linear optimization formula of Zhao and Badler in order to handle
variational constraints that hold over an interval of motion frames.
The Newton methods also have the advantage that they do not
suffer from singularity problems, such as to those that occur when
finding the Jacobian inverse. However, they are complex, difficult
to implement and have high computational cost per iteration.

5.3. Heuristic inverse kinematics algorithms

The heuristic sub-family of algorithms implements simple ways
for solving the IK problem without using complex equations and
calculations. These algorithms are usually composed of simple op-
erations, in an iterative fashion, that gradually lead to an IK solution.
Heuristic IK algorithms have low computational cost, thus usually
end up in the final pose very quickly, and are very good for simple
problems, especially for non-anthropometric skeletons (e.g. spiders,
insects). One of their main limitations is that, even if all joint con-
straints are satisfied, they suffer from unnatural or biomechanically
unfeasible motions and gestures. Heuristic solvers do not take into
consideration spatio-temporal corrections between nearby joints, as
they treat each joint’s constraint independently with no global con-
straints. The following sub-sections present and discuss the most

popular heuristic IK solvers, as well as ways to overcome the cur-
rent limitations.

5.3.1. Cyclic coordinate descent

Cyclic coordinate descent (CCD), initially proposed in robotics by
Luenberger [Lue89] and Wang et al. [WC91], is an iterative heuris-
tic technique that is suitable for interactive control of an articulated
body. CCD is one of the most popular IK iterative algorithms; it
has been implemented for human-like manipulation in many com-
puter graphics and robotics applications [Lan98]. Kenwight has pre-
sented a comprehensive review of CCD in [Ken12a], examining its
viability for creating and controlling highly articulated characters;
in addition, he discussed implementation details and the algorithm
limitations.

The CCD method attempts to minimize position and orientation
errors by transforming one joint variable at a time. The main idea
behind CCD is to align each joint position with the end effector and
the target at each step; starting from the end effector and moving
inward towards the manipulator base, each joint angle is transformed
so that the last bone of the chain gets closer to the target. Assume
a kinematic chain consists of n joints, where p1 is the root joint
and pn is the end effector, and let t be the target position. First,
find the angle θn−1 defined by the target position, pn−1 and the end
effector. Then, update the end effector’s position by rotating pn so
that θn−1 is set to zero. Similarly, find the angle θn−2 defined by the
target position, pn−2, and the end effector, and update pn−1 and pn

positions so that θn−2 is zero. An iteration is completed when all
joints are updated. This procedure is repeated until the end effector
is satisfactorily close5 to the target position.

CCD is very simple to implement, requiring only a dot and cross
product; thereby, it has low computational cost per iteration. It pro-
vides a numerically stable solution and it has linear-time complex-
ity in the number of degrees of freedom. CCD can be easily ex-
tended to include local constraints, such as the methods described
by Welman [Wel93] and Lander [Lan98], where the allowable an-
gle transformation is bounded at each step by upper and lower
limits. By definition, CCD only handles serial chains; in this direc-
tion, Merrick and Dwyer, [MD04], described an extension which
deals with tree articulated structures and multiple end effectors. The
proposed multiple-chain method can be applied successively over
multiple articulated chains; it divides the articulated structure into
smaller serial chains and treats each chain independently. Similarly,
Shin et al. [SLSG01] and Kulpa et al. [KM05, KMA05] proposed
to divide the skeleton into sub-categories and then apply CCD hier-
archically and iteratively. However, CCD is not free from problems;
the first issue arises from its poor motion distribution, since it tends
to overemphasize the movements of the joints closer to the end ef-
fector, which may lead to the production of unnatural postures. CCD
may generate large angle rotations that often produce motion with
erratic discontinuities and oscillations. In some cases, particularly
when the target is located close to the base, it causes a chain to form
a loop, rolling and unrolling itself before reaching the target. Sim-
ilarly, for certain target positions (especially when high accuracy

5Less than a user specified threshold.
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is required), the algorithm can take a large number of iterations,
resulting in a slow zigzag motion of the end effector.

Generally, even if constraints have been incorporated, unrealistic
poses may be generated, especially in highly articulated characters,
since it is difficult to implement global manipulation restrictions.
In this manner, Mahmudi and Kallmann’s proposed a variation of
CCD named inverse branch kinematics (IBK) [MK11], aiming to
deal with the production of unnatural pose, by assigning a continu-
ous rotational range to control a pre-defined global-transition-cost
threshold. Moreover, Kenwright [Ken12a] introduced a biasing fac-
tor into each iteration in order to correct the rotation at each time. He
also improved the CCD convergence by adding a feedback constant,
which is the distance between end effector and target, which later
multiplies with the under-damped factor to produce smaller values
closer to the target. This allows movement only in those links that
are necessary to accomplish the given task.

There are many variations and extensions of the CCD algorithm
that have tried to improve its performance; for instance, the circular
alignment algorithm (CAA) [Muk12] placed the given joint chain
along a circular arc between the base and the target position. Thus, it
is ensured that there is a solution available and there is no possibility
of the chain intersecting itself (a common problem in CCD). CAA,
however, requires all links to have the same length and only works
on a two-dimensional plane containing the base of the kinematic
chain and the target. The inductive IK (IIK) algorithm [KLC*03] is
another extension of CCD; it uses a uniform posture map (UPM) to
control the posture of a human-like 3D character, while the learning
algorithm prevents the generation of invalid output neurons. The
IIK algorithm forms a forward kinematic table containing the FK
values of each output neuron, and searches for the FK points that are
closest to the desired position so as to get a more natural posture.

5.3.2. Forward and backward reaching inverse kinematics

Another heuristic method for solving the IK problem is forward
and backward reaching IK (FABRIK), introduced by Aristidou and
Lasenby [AL11]; the idea of FABRIK is similar to the follow the
leader (FTL) algorithm [BLM04] that has been used for rope sim-
ulation, which, instead of using angle rotations, updates the joint’s
new positions along a line to the next joint. However, unlike FTL
that operates in a single iteration, FABRIK works in a forward
and backward iterative mode, minimizing at each time the distance
between the target and the end effector.

Let p1, . . . , pn be the joint positions of a kinematic chain, where
again p1 is the root joint, pn is the end effector and t is the target
position. The distances between each pair of joints are denoted
as di = |pi+1 − pi |, for i = 1, . . . , n − 1. In the forward stage, the
algorithm estimates each joint position starting from the end effector,
pn, moving inwards to the manipulator base, p1. The new position of
the end effector is assigned to be the target position, p′

n = t. Then,
find the line, ln−1, which passes through the joint positions pn−1 and
p′

n, and place p′
n−1 at the position that lies on this line at a distance

dn−1 from p′
n. Similarly, the joint position p′

n−2 is computed using the
line ln−2, which passes through the pn−2 and p′

n−1, with a distance
dn−2 from p′

n−1. The algorithm continues until all joint positions
p1, . . . , pn are updated. In the backward stage of the algorithm, the

same procedure is repeated but this time moving backwards from
the manipulator’s base to the end effector, this completes one full
iteration. The procedure is then repeated, for as many iterations
as needed, until the end effector is identical or close enough to
the desired target. FABRIK always converges to any given goal
positions, when the target is within reach, as proved in [ACL16].

FABRIK’s main advantages are its simplicity, its flexibility to be
easily adapted to different problems, the low computational cost and
its effectiveness on handling closed loops or problems with multiple
end effectors. The latter can be achieved by dividing the algorithm
into smaller sub-sections and using sub-bases as intermediate stops.
FABRIK also supports most of the anthropometric and robotic joint
constraints by repositioning and reorienting the target to be within
the allowable bounds [ACL16, Xie16]. FABRIK reaches the target
very fast, converges to the target even if the error tolerance is set
to zero and is well balanced near singularities [PR13]. Another
feature of FABRIK is that, in contrast to CCD that overemphasizes
motion close to the end effector, it distributes movements to all
joints.

Numerous methods have been proposed to extend FABRIK.
Huang and Pelachaud [HP12] used a variation of FABRIK to solve
the IK problem from an energy transfer perspective. They used
a mass-spring model to adjust the joint positions by minimizing
the force energy which is conserved in springs. Moya and Col-
loud [MC13] proved that FABRIK can cope with target priorities,
adjusting the initial algorithm to deal with joints that have more
than two segments. Aristidou et al. [ACL16] applied a constrained
version of the FABRIK algorithm in a hierarchical and sequen-
tial fashion with priorities to control the movement of a humanoid
model. Agrawal and van de Panne [AvdP16] used a data-driven
prior to warm start FABRIK for the production of more natu-
ral looking human poses, while Tao and Yang [TY16] extended
FABRIK to deal with collision free tasks. Collision problems can
alternatively be solved using the Brown et al. [BLM04] method.
Lansley et al. [LVSF16] have recently introduced CALIKO, an
open library for the FABRIK algorithm.

FABRIK solves the IK problem in position space, instead of ori-
entation space, while joint orientations are dealt with in a separate
step (which also adds extra complexity). Hence, it demonstrates
less continuity under orientation constraints. In particular, the con-
strained version of the algorithm encounters a deadlock situation
when the kinematic chain is small in size and the joints close to
the end effector have strict constraints. In such a case, FABRIK is
incapable of finding a solution since the kinematic chain is unable
to bend enough and reach the target. This is due to the structure
of the algorithm where each joint is treated independently. The tar-
get position is projected and re-oriented on the surface of a conic
section locally, at each step of the algorithm. Thus, the algorithm
does not take into consideration the restrictions on the previous
(parent) or next (child) joint in order to push, if possible, the kine-
matic chain to bend further in the current joint. The authors coped
with the deadlock situation using a random perturbation technique
to push the parent joints to their limits, allowing more flexion for
the child joints [ACL16]. Furthermore, similar to CCD, FABRIK
encounters a problem of inability to integrate global model con-
straints that meet the spatio-temporal correlations between nearby
joints.
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6. Data-Driven Inverse Kinematics

The recent advances in motion capture technology and the large
availability of motion capture (mocap) data in online libraries led
to data-driven methods for solving the IK problem. The main idea
behind data-driven methods is to use pre-learned postures to match
the positions of the end effectors to a feasible pose learnt from the
database. In robotics, this is usually done via methods that are based
on neural networks and artificial intelligence [OCA*01, XW01,
DVS01].

6.1. Learnt methods

One can divide existing learnt methods for learning IK into two
groups: the error-based and the example-based methods. Error-
based methods improve the inverse kinematic estimate that is used
to reach the target position [JR92, WK98], while the example-based
methods use example configurations for learning the inverse kine-
matic estimate [BGG93, RSG10]. The most common strategy fol-
lowed in computer graphics is the example-based, where postures
are reconstructed based on a database of pre-recorded motions. In
this direction, Rose et al. [RISC01] introduced a method that inter-
polates example motions and positions to accomplish given human
figure tasks. Each example pose is parameterized by the position
of certain bones, and based on the parameters of the desired posi-
tions, several poses are blended using radial basis functions. Later,
Grochow et al. [GMHP04] presented a style-based IK method which
is based on a learned model of human pose; they model the proba-
bility distribution over all possible whole-body poses using scaled
Guassian process latent variable models (SGPLVM). Given a set
of pose constraints, the proposed system was able to produce the
most likely pose satisfying those constraints. During the learning
procedure, the system searches for the low-dimensional representa-
tion of the input data and creates a probability distribution function
(PDF) in the latent space. Finally, it uses the PDF to find the pose
which is most likely compared to the input constraints. In general,
style-based IK generates natural poses but only in a narrow, human
reachable space because of its limited training capacity, as the esti-
mated poses are highly related to the training data. Liu et al. [LHP05]
extended this work to consider the physical properties of motion,
such as muscle forces, gravity and the friction of the feet on the
ground. They have utilized non-linear inverse optimization in order
to choose movements that use as little energy as possible, preventing
sudden changes in the resulting postures.

Searching for pose similarities in large-scale motion capture
databases implies high computational cost. A way to decrease the
complexity is to reduce the dimensionality of the database, encapsu-
lating only the essential aspects of a specific motion pattern. In this
way, Chai and Hodgins [CH05] apply local principal component
analysis (PCA) to construct a latent space during run-time and find
the closest motion from a pre-defined motion set that matches the
current marker movement. Carvalho et al. [CBT07] select a small
subset of postures using probabilistic PCA, and solve the IK problem
completely within the latent space associated with a skill (e.g. golf),
whereas Raunhardt and Boulic [RB09] take advantage of an encap-
sulated skill with PCA to guide the solution of an IK problem without
restricting it to the latent space. Priorities are used to achieve some
unusual spatial constraints that were not part of the initial dataset

used for learning the skill. Tournier et al. [TWC*09] approximate
the pose manifold using a principal geodesics analysis (PGA), and
then use an iterative minimization algorithm to search this man-
ifold for pose matching end effector constraints. Another way to
deal with the high computational complexity of searching similar
poses in mocap databases was proposed by Wu et al. [WTR11],
named NAT-IK. Instead of searching in full-scale motion libraries
that contain continuous poses, they reduced the search space by
utilizing the kd-tree clustering technique to select only a represen-
tative set of poses. The main advantages over the style-based IK
method is that it is designed for per-frame problems, and needs
to be trained only once; it is able to deal with large datasets
and generates natural poses in a much wider, human-reachable
space. Nevertheless, NAT-IK does not run at a high frame-rate,
and constraints add a significant amount of extra computational
burden.

Given a set of end effector positions, Ong and Hilton [OH06] con-
strained the pose using a hierarchical cluster model learnt from a mo-
tion capture database. Wei and Chai [WC11] formulated the inter-
active character posing problem via a maximum a posteriori (MAP)
framework; they segment the motion database into local regions and
model each of them individually. More recently, Ho et al. [HSCY13]
proposed a framework that conserves the topology of the synthesiz-
ing postures; using Gauss linking integral (GLI), they avoid body
part penetration by distinguishing topologically different postures,
thus reducing the processing time required to search for data in
the motion database. There is an ongoing effort, looking for effi-
cient methods to establish temporal coherence and continuity in the
generated motion [SH12, YVN*14, HMC*15].

Sumner et al. [SZGP05] proposed a mesh-based IK method
(MESH-IK) which, instead of using human poses as training data,
learns the space of meaningful shapes from example meshes. Us-
ing the learned space, MESH-IK generates new shapes that respect
the deformations exhibited by the examples, yet still satisfy vertex
constraints imposed by the user. Der et al.in [DSP06] describe an
extension of the MESH-IK method which provides interactive con-
trol of reduced deformable models via an intuitive IK framework.
The collection of transformations compactly represents articulated
character movement that has been derived automatically from ex-
ample data. The IK problem is formulated in a reduced space to
achieve an independent resolution performance, meaning the speed
of the posing task is a function of the model parameters, rather
than of character geometry. Inverse blending [HK10] is another
data-driven method which interpolates similar motion examples ac-
cording to blending weights; in this way, it is able to precisely con-
trol end-effectors positions, and meet multiple spatial constraints.
More recently, Yoshiyasu and Yamazaki [YY12] introduced Cage
IK (CageIK); CageIK, in contrast to MESH-IK, is applicable to more
general types of mesh representations. The authors provide a set of
cage geometries as examples and interpolate them based on han-
dle movements. CageIK seems to be able to edit a larger range of
mesh models than MESH-IK, it can place handles directly on the tar-
get model, and can deform the model locally. However, it requires
that the target model is in a similar pose to the reference pose, it
cannot preserve the shape of each component perfectly when multi-
component models are edited, and cannot reproduce high-frequency
changes.
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Data-driven methods are generally used to ensure natural move-
ments selecting candidates from a feasible set of solutions. Their
efficiency depends on the size of the database. Example-based
methods require an offline training procedure, and the results are
highly correlated with the training data. Therefore, data-driven IK
solvers usually suffer from discontinuity in poses [RPE*05]; if
the desired postures are too distant from those of the database,
the result may be temporally incoherent. In this direction, Chai
and Hodgins [CH05] search for the K-closest samples of a pos-
ture using a combination of metrics that involves pose and velocity
features, to ensure smooth transition and temporal consistency be-
tween poses. Then, they build a graph to accelerate the search of
the nearest neighbours. Similarly, Krüger et al. [KTWZ10] and later
Tautges et al. [TZK*11] construct a kd-tree, and then create a lazy
neighbourhood graph (LNG) for fast selection of motions that are
temporally coherent. Liu et al. [LWC*11] used MAP estimation
of human poses in sequential mode to match the control signals
obtained from motion sensors, increasing the temporal consistency
of the movements. In addition, there are several methods that re-
construct motion streams from sparse representations by retrieving
matched motion sequences from a motion capture library [SH08,
RTK*15, XWCH15].

6.2. Deep learning methods

The growing popularity of deeply learned (DL) networks, which
have been successfully integrated for human pose reconstruc-
tion [ST13, YR13, TS14], has prompted researchers to investigate
their use as motion controllers. Instead of searching for the closest
posture that matches the constraints (i.e. identify full body poses),
DL uses neural networks to learn the articulated motion by optimiza-
tion processes from real movements. In other words, they are used
to learn a mapping between high-level control parameters and low-
level joint translations and rotations. Convolutional neural networks
(CNNs) have been used for physically based simulations, in or-
der to learn motion controllers for articulated characters [TGLT14,
MLA*15, DWW15]; these controllers can be parameterized, e.g.
setting new targets for the end effectors, to generate movements
that satisfy the given constraints. Taking advantage of the growing
availability of motion capture data, Allen and Faloutsos [AF09] pre-
sented a system that creates physics-based locomotion controllers
to naturally simulated characters using automatically evolving net-
works of connected neurons. Levine and Koltun [LK14] utilized
neural networks to learn high-dimensional policies, that are later
used to control motions as an optimization over trajectory distribu-
tions. More recently, Holden et al. [HSK16] presented an entirely
machine-learned motion controller, where the embedding of non-
linear motion manifolds is learnt using convolutional autoencoders.
To map from high-level parameters to the motion manifold, and thus
synthesize character movements, the authors integrate a deep neural
network, allowing editing of the generated motion by performing
optimization in the space of the motion manifold. In this way, it is
possible to edit/control motion for style transfer and synthesis, task
completion, motion retrieval or motion cleaning [HSKJ15], while
ensuring that the edited motion remains plausible. However, they are
in general computationally expensive to train; for instance, training
a CNN requires a large number of iterations to learn an acceptable
controller [Sim94].

7. Hybrid Methods

Hybrid techniques comprise another family of methods that solve
the IK problem. In an attempt to reduce the complexity of the
optimization problem, they decompose the IK problem into ana-
lytical and numerical components [TGB00]. For instance, Lee and
Shin [LS99] formulated a hybrid IK approach that combines a nu-
merical optimization technique, where its optimization is based
on penalty configuration, with an analytical method that is de-
signed to reduce the burden needed for the numerical optimiza-
tion. Shin et al. [SLSG01] introduced a solver for full-body human
puppetry that divides the process into three sub-problems: com-
puting the root position, the body posture and the limb posture.
The authors solved each sub-problem independently, employing
IK methods specially designed to achieve high performance; given
a good estimation of the root position, they used numerical op-
timization to refine the body posture, and then used inexpensive
closed-form solutions to fix limb postures. Kulpa et al. [KM05,
KMA05] extended the Shin et al. and Tolani et al. approaches for
more natural-looking character poses, by extending the model to en-
capsulate control of the centre of mass. They readapt pre-recorded
animations to satisfy certain constraints and apply these algorithms
separately in different body parts such as the head, the two arms,
the two legs and the trunk. In similar context, Bouënard et al. and
Vahrenkamp et al. [BGW12, VAD12] divided the problem into
different motor tasks that are solved independently using robotics-
inspired proportional-derivative controllers.

7.1. Statistical methods

Sequential Monte Carlo methods (SMCM) have also been used for
solving IK problems; Courty and Arnaud [CA08] proposed such a
solution. Using a sampling approach, the IK problem was solved
with FK, hence avoiding the computation of the inverse matrix. The
problem is cast as a hidden Markov model (HMM), whose hidden
state is given by all the parameters that define the articulated figure.
The state space consists of all the possible configurations of the
articulated figure. The inverse kinematics is then reformulated in
a filtering framework. The proposed SMCM IK solver does not
require explicit numerical inversion and joint restrictions can be
added to the system in an intuitive manner. These can be easily
implemented without the need for complex optimization algorithms.

Particle IK solvers have been implemented in the works of
Hecker et al. [HRE*08] and Sapra et al. [SMM14], which use a
body pose goals set and attempt to satisfy the goals by forming a
system of constraints over the linked character bodies. Recently,
Huang et al. [HWF*17] introduced an objective function over
a probability density function (PDF), which is built upon multi-
variate Gaussian distribution models that are learnt from real data
to describe natural motion. The authors employed the PDF within
a Jacobian framework as soft constraints that control the DoFs of
the joints to ensure the smoothness and coherence of the motion in
the local joint space.

7.2. Parallel computing

Recently, some effort has been devoted to parallel IK algo-
rithms, which allow solutio of the problem for complex articulated
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bodies with multiple constraints [AH11]. More specifically, Farzan
and DeSouza [FD13] proposed a parallelization method that re-
lies on the computation of multiple numerical estimations of the
Jacobian inverse; they handle singularities and multiple paths
in redundant robots by selecting the best path to the desired
configuration of the end effector on multi-core architectures
for the Denavit–Hartenberg representation of robots. Similarly,
Harish et al. [HMCB16] extend the DLS method to exploit max-
imum parallelism by mapping the internal DLS steps to the data-
parallel GPU architecture. Huang et al. [HFDP16] employ a vari-
ation of the SDLS method, while the joint motion parameters are
learned automatically from pre-captured motion data that are stored
in an octree for fast access. Given the end effectors trajectories, a
smooth animation is achieved by parallel filtering of the joint in-
formation, allowing the constraints to be learnt dynamically and
reducing the required computational time.

7.3. Sequential inverse kinematics

Unzueta et al. [UPBS08] presented the sequential IK method (SIK),
a direct extension of the Boulic et al. work [BVU*06]. SIK is an
analytic-iterative IK method that reconstructs 3D human full-body
movements in real time. The inputs to this method are end effector
positions, such as wrists, ankles, head and pelvis (the least possible
input in order to be usable within a low-cost motion capture system
in real time), which are used to find the human pose. The main
idea of SIK is that the reconstruction should be solved sequentially
using simple analytic IK algorithms in different parts of the body,
in a specific order. SIK starts from the configuration of the spine
using a hybrid IK method that uses the positions of the root and
the head. Then, using the spine and the known end effector posi-
tions, the approach determines the positions and orientations of the
clavicles. Finally, using the known end effector positions, an ana-
lytic IK method is incorporated to situate each of the limb positions
and orientations. In addition, biomechanical limitations are applied
to constrain the joints and prevent unnatural movement to ensure
visually plausible human poses.

8. Biomechanical constraints

In a redundant system, for example, an articulated figure for which
we are seeking IK solutions, it is necessary to incorporate joint re-
strictions to choose only the appropriate solutions that satisfy the
user/model constraints. A variety of different joint and model con-
straints have been proposed. The first family of constraints is based
on types of high-level control, such as the position, orientation, gaze
and balance. In the second family of constraints, the goal is defined
by the user or automatically depends on the environment, such as in
interaction tasks (e.g. floor, reach, grasp), or in collision avoidance.
Kinematic chains with multiple end effectors have an additional
parameter that needs to be assessed; having multiple tasks may
result in conflict between goals, which cannot be achieved simulta-
neously. Thus, the IK solver should take into account the importance
of each task. The importance can be controlled using a priority or
a weighted approach, and the IK solver will find different solutions
under different case scenarios. The priority approach verifies the
most important task first and tries to reach the others only if possi-
ble, as in [HYN81] and [BB98], while the weighted approach finds

a compromise solution using a weighted sum of all constraints, as
in [Gle98].

A joint is defined by its position and orientation and, in the most
general case, has 3 DoF. The essential characteristic of a joint is that
it permits a relative motion between the two limbs it connects. The
most common anthropometric joints are: (1) the ball-and-socket,
which allows rotary motion in every direction within certain limits,
(2) the hinge, which permits motion only in one plane about a
single axis, (3) the pivot, which permits only rotating movement,
whereby the axis of the convex articular surface is parallel to the
longitudinal axis of the bone, (4) the condyloid, which allows biaxial
movements, i.e. foreword-backward and side to side, (5) saddle,
which is similar to the condyloid joint but different angle limits
describe the allowable bounds, and (6) the gliding, which allows
only gliding or sliding movements. In robotics, there is also the
prismatic joint, which provides single-axis sliding function with the
axis of the joint coincident with the centre line of the sliding link.

Most of the existing structure models use techniques which re-
strict the bone to lie within the rotational and translational limits
of the joint. Grassia [Gra98] used a practical parameterization of
rotations using the exponential map and compared different param-
eterizations of rotation; he concluded that the performance of each
parameterization depends on the application or the joint model.
Technically, it is possible to incorporate constraints on the rotation
of a particular joint by directly limiting the Euler angles. However,
the results will not be realistic for modelling complex joints or artic-
ulated models. Blow [Blo02] proposes a loop hung in space, limiting
the range of motion of the bone to “reach windows” described by
star polygons. Wilhelms and Van Gelder [WG01], instead of us-
ing reach windows, present a 3D “reach cone” methodology using
planes, treating the joint limits in the same way as [Blo02]. Kor-
ein [Kor85], as well as Baerlocher and Boulic [BB01], parameterize
realistic joint boundaries of the ball-and-socket joint by decompos-
ing the arbitrary orientation into two components and control the
rotational joint limits with spherical polygons, so they do not exceed
their bounds. A similar parameterization to [Kor85] was also used
by Unzueta et al. [UPBS08], where they modelled swing move-
ments using a spherical parameterization of orientations. Aristidou
and Lasenby [AL11] factorized the bone rotation into a rotational
and orientational step and added joint constraints by repositioning
and reorienting the target to be within the allowable bounds. They
later extended their approach to cope with different anthropometric
and robotic joints, as well as humanoid models, using a hierarchical
framework [ACL16].

For human-like models, as well as for most legged body models,
the joints have motion restrictions to keep the movements within a
feasible range and prevent unrealistic movements. Several biome-
chanically and anatomically correct models have been presented
that formalize the range of motion of an articulated figure [MB91].
These models are hierarchically structured and are characterized by
the number of parameters which describe the motion space. Be-
cause of their complex nature, most of the proposed joint models
are simplified or approximated by more than one joint. The most
well-known models are: the shoulder model, a complex model com-
posed of three different joints [MT00, KTL07]; the spine model, a
complex arrangement of 24 vertebrae (usually, for simplicity, the
spine is modelled as a simple chain of joints [Kor85, BPW93]); the
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hand model, which is the most versatile part of the body comprising
a large number of joints [MSZ94, Ari17]; the strength model, which
takes into account the forces applied from the skeletal muscles to
the bones [BPW93].

Incorporating biomechanical constraints may limit the allowable
motion to a smaller set of movements so that the humanoid model
avoids unnatural poses. However, it does not prevent the emergence
of self-collisions. There is much research devoted to detecting colli-
sions between rigid objects (e.g. [Qui94, GLM96]), deformable ob-
jects (e.g. [vdB98, MKE03]) as well as self-collisions in deformable
objects, such as Volino and Magnenat-Thalmann [VMT94],
James and Pai [JP04] and Govindaraju et al. [GKJ*05].
Brown et al. [BLM04] presented a self-collision methodology to
detect and avoid self-collisions in a knot tying simulation, while
recently, Schvartzman et al. [SPO10] used the star-shaped property
of a polygon to manage self-collisions. Self-collision can also be
handled using the penetration depth (PD); Zhang et al. [ZKVM07]
presented a detailed review for the computation of the PD. The
authors conclude that the computation of PD is not sufficient for
many applications because it does not take into account the rota-
tional motion. Thus, they introduced a more generalized PD ap-
proach that considers possible rotations throughout the path in or-
der to separate the overlapping objects. Nawratil et al. [NPR09]
defined the generalized PD with respect to a distance metric, allow-
ing efficient computation. However, to handle self-collisions within
a humanoid model, it is important to examine limb constraints.
This can be done by integrating the self-collision detection step
within the IK algorithm, as presented by Unzueta et al. [UPBS08],
where they estimated PD to prevent the penetration of the elbows in
the torso.

Even if joint limits are taken into consideration, unnatural poses
may still be obtained. Joint limits provide no information about the
most likely pose of a human in motion; they only attempt to reach
a given target position and satisfy the rotational and translational
limitations. Thus, it is necessary to incorporate model constraints,
e.g. a humanoid model, to additionally consider the importance pri-
orities, and physiological constraints of the model. Since IK does
not directly address dynamic constraints, such as momentum con-
servation during ballistic motion, significant efforts have been made
to design physically based interactive tools to ensure the produc-
tion of plausible motions [KSPW04, YLvdP07, LPY16, ATK16].
Physics-based character animation aims at guiding the IK solvers
to provide a more natural motion that remains within a feasible set
of movements. For instance, Lee and Goswami [LG07] used the
momentum and inertia to improve the balance of the animation,
Shapiro and Lee [SL11] utilized certain dynamic physical proper-
ties, such as the centre of mass and angular momentum, to allow
the improvement of unrealistic motions, while Sok et al. [SYLH10]
have additionally used momentum and force constraints. Inverse
kinodynamics (IKD) [KRRS12] is another kinematic workflow that
encapsulates short-lived dynamics and allows precise space-time
constraints. More recently, Rabbani and Kry [RK16] introduced
a method that respects physics during certain dynamic activities
by controlling both the centre of mass, and the magnitude of the
character’s inertia tensor. Finally, muscle-based control methods
are also very important to maintain plausible and natural movem-
ents [GvdPvdS13]. Nevertheless, another way to address motion

naturalness, and ensure the production of plausible movements, is
to incorporate data-driven methods, with the cost of having to learn
a wide range of complex and dynamic movements through a time-
consuming training session.

9. Discussion

IK was commenced in robotics to determine the joint parameters
that move each of the robot’s end effectors to a desired position.
However, in computer graphics and game programming, it has been
introduced to deal with entirely different problems, including to
efficiently animate 3D articulated subjects, to connect game charac-
ters physically to the world, to allow virtual characters to complete
specific tasks, for obstacle avoidance, motion synthesis, motion re-
targeting, contact constraints, etc. In this section, we discuss the
performance of numerous IK solvers, suggesting which family of
solvers is best suited for particular problems, e.g. human-like or
non-anthropomorphic characters, real-time interaction, multi-chain
problems, etc. The discussion evaluates the performance of the
solvers with regard to their scalability, computational cost, as well as
the smoothness of their resulting motion, and additionally their lim-
itations. Finally, we propose future research directions that involve
potential advances in IK usage and performance.

The choice of which IK solver should be employed mainly de-
pends on the definition and peculiarities of the problem, and in-
cludes several parameters, such as the computational cost (speed
of performance, e.g. for real-time interactive applications), the de-
sired smoothness of the final posture (depends on the application
e.g. humans, animals or robots), scalability (e.g. the necessity to be
easily extendable to different models and to support multiple end
effectors) and the possibility of applying priorities, joint and model
restrictions. For instance, analytic solvers are best suited for sim-
ple case IK problems, such as isolated arm/legs, with maximum 7
DoF, while iterative methods are more general but require multiple
steps to converge towards the solution due to the non-linearity of
the system. Jacobian methods can be a good choice in cases where
biomechanical laws, priorities and weighted constraints are impor-
tant, while heuristic methods are more attractive if the computational
cost is of major significance. The following subsections discuss the
performance of each family of methods for particular applications,
suggesting which method is more appropriate for different tasks.

9.1. Trends

Figure 4 illustrates a timeline diagram, where key methods have been
grouped and sorted in a chronological order. One can observe what
methods researchers have focused on in the last few decades, and
predict possible future research directions. Since IK was initiated in
robotics to move 6R robot manipulators, the analytical methods were
among the first to be employed for simple applications in computer
graphics; the closed-form solutions have low computational cost and
fast convergence rate that are of high importance in motion planning.
However, due to their complexity, limited scalability and inability to
solve complex kinematic chains, they are not preferred for computer
graphics applications. One solution was to move to hybrid methods,
such as [TGB00] and [SLSG01], which divide the human skeleton
into kinematic parts, and solve each part independently using a
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Figure 4: A timeline showing how the IK approaches have progressed over the years by examining publication years of key methods.

combination of analytical and numerical methods. Another solution
was to use linear approximations to estimate the angle parameters of
the manipulator. Thus, the Jacobian methods became popular in the
1980s and early 1990s, and have been extensively studied for over a
couple of decades [Bus09]. Currently, they are of less interest in the
computer graphics community since modern real-time interactive
environments require control of complex multi-chain characters in
a fast and realistic way. Nevertheless, some effort has been recently
devoted to parallel computation of the Jacobian based methods,
e.g. [HMCB16], to gain efficiency and deal with singularities and
multiple path problems.

A different way to deal with the IK solver was conceived around
1990s [Lue89, WC91]. The idea was to integrate a heuristic ap-
proach, estimating the joint configurations in a simplistic and itera-
tive fashion. This family of methods offers solutions that are simple
and computationally efficient. The solver can be easily adapted to
different problems, but their ability to produce realistic human mo-
tion and their performance in terms of quality are limited.

The need for realistic animations, along with the development
of technology in interactive applications, led to the development of
methods that combine knowledge in statistical analysis and clas-
sification. In the early 2000s, there was a tendency to extend the
current solvers with pre-defined hierarchically and/or sequentially
structured models, in order to improve their performance with re-
gard to the naturalness of the produced motion. Moreover, they use
different solvers for different tasks, employing the most suitable
methods for each case to achieve the best possible performance. As
a result, hybrid methods are faster, more reliable and can animate
complex characters consisting of multiple kinematic chains.

Over the last decade, as demonstrated in the timeline diagram,
the trend has shifted towards using data-driven methods, aiming
to produce, as much as possible, more natural and realistic move-
ments [GMHP04, WTR11, HSK16]. The widespread use of this
family of methods is mainly due to the latest advances in motion
capture technology, and the easy availability of feasible movements

in motion libraries. Many scholars, to ensure their solver produces
plausible and anatomically correct motions, have employed data-
driven algorithms, or learnt motion from optimizations through
convolution. In this way, the results are guaranteed to be within
a feasible set that respects the physiological constraints of the char-
acter’s movement.

9.2. Human-like characters

Human-like characters are the most common models used in com-
puter graphics. In general, this kind of character consists of a large
number of joints (at least 24) that are limited by biomechanical and
physiological constraints, ending with up to 70 DoFs. Many solvers
have been proposed to handle the high articulation of human move-
ments. The first family of methods used to animate humanoids were
the Jacobian-based methods. Jacobian methods can easily handle
the high articulation of the human skeleton, but they generally pro-
duce oscillating motion with discontinuities and jerky movements,
especially when the clamping for the linear approximation allows
large steps between the target and the end effector, or when the
limbs are near singular postures [UPBS08]. Reducing the ampli-
tude of the clamping steps improves their stability, at the cost of
higher computational time. Altogether the time needed to track the
target without a jerky convergence is a limitation; for instance, DLS
and SDLS methods perform well in terms of jerkiness and singular-
ity issues, but are computationally expensive, and thus less popular
in controlling or interacting with human-like characters.

Some effort has been devoted to heuristic, iterative methods to an-
imate human-like characters by tracking a number of control points
attached at certain positions, such as the end effectors [CMGM16,
ACL16]. The problem with heuristic methods is their limited ca-
pability to ensure that spatio-temporal correlations between nearby
joints are satisfied. Even if joint constraints are applied, not all gen-
erated poses meet the physiological constraints that produce nat-
ural human movements. This is mainly due to the fact that the
heuristic approaches apply constraints locally, at each iteration,
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where each joint is treated independently, without offering the po-
tential of incorporating global constraints. A way to deal with the
production of unnatural poses from a global perspective is to divide
the skeleton into sub-chains and work in a hierarchical and sequen-
tial order with priorities, as well as to study the temporal correla-
tions between joints and then allow motion to be further controlled
by pull-weights,6 such as [Roo17]. For instance, in [AZS*17], a
number of end effectors control the style of a given motion by min-
imizing an optimization function that correlates human pose and
emotions. For simpler models, such as hands, it is possible to define
a well-constrained model that integrates biomechanical constraints
and then to apply IK [Ari17].

Hybrid methods that combine numerical and analytic tech-
niques in a hierarchically structured model may be employed
for tasks where low computation cost is desired and a well-
constrained humanoid model is sought. A detailed evaluation of
various numerical and hybrid methods on a humanoid model was
presented by Unzueta et al. [UPBS08], where the authors com-
pared their SIK method against several variations of the Jacobian
(transpose, pseudo-inverse, DLS, SVD-DLS and SDLS), CCD, the
Kulpa et al. algorithm [KMA05], the Priority IK [PHW*04], and the
Tolani et al. method [TGB00]. Their main observations were that
CCD and the hybrid methods (SIK, Kulpa et al. and Tolani et al.)
are computationally more efficient than other methods, while in
terms of reconstruction quality, SIK, Priority IK, Kulpa et al. and
Tolani et al. methods give the best results among the methods used
in the evaluation. However, even for well-defined models, it is not
straightforward to understand how to apply global limitations, such
as physically based or physiological constraints. Thus, there is no
guarantee that the solution returned by the solver will be within a
feasible set of natural human movements.

The current trend for controlling and animating human-like char-
acters is to use data-driven learnt or deep learning) approaches.
Learnt methods select the closest candidate pose, which meets
the given constraints, gained from a database [RISC01, GMHP04,
WTR11, WC11, HSCY13]; they have the advantage that no con-
straints are required to be integrated into the solver, since recon-
structed poses are matched only to feasible ones. This ensures that
the generated pose is natural and satisfies the anatomical and phys-
iological constraints of the human skeleton. However, the data-
driven methods require an offline learning stage and the quality
of the results depends on the size of the motion database used. In
cases where the true pose differs dramatically from the range of
postures stored, abnormal solutions may be produced. The large
availability of motion clips in recently established databases over-
comes this problem, but the choice of the most suitable pose from
those available is not trivial. There are many other factors that af-
fect the performance of data-driven methods, such as a mechanism
to ensure the temporal consistency and the smooth transition be-
tween the selected poses [CH05, TZK*11]. In addition, there is
no guarantee that the best candidate retrieved from the matched
poses does not contain errors due to bad capturing. On the other
hand, deep learning methods, e.g. [HSK16], can deal with the

6Pull-weights allow us to distribute the joint modification along the kine-
matic chain, taking into consideration spatial and temporal correlations be-
tween nearby joints.

error issues; they use pre-captured motions to learn motion man-
ifolds through convolution, smoothing the errors, thus reconstruct-
ing natural and plausible movements. However, similarly to the
learnt methods, learning a CNN model is time-consuming, the qual-
ity of the resulting motion is correlated with the amount of data
used for training. When motion is smoothed through the convo-
lution process, it interpolates fine details of the movement. Nev-
ertheless, both learnt and deep learning methods seem currently
to be among the most popular approaches for controlling human
pose and reconstructing motion from sparse data [SH08, KTWZ10,
LWC*11, RTK*15, XWCH15, HSKJ15] as well as for animating
highly articulated human parts (e.g. hands) [dLGPF08, OKA11,
LYTZ13].

Even when working on human-like characters, data-driven meth-
ods are not always suitable. There are instances where directors de-
sire their characters to have a cartoony look and behaviour (e.g. in
computer animated films such as Shrek), or superhero powers. Such
movements cannot be captured on a large scale so as to establish
a convenient library of movement to use for retrieving the desired
pose. In such cases, it is necessary to consult alternative methods by
defining well-constrained hybrid solutions that operate in a hierar-
chical and sequential fashion. In addition, data-driven methods are
not computationally efficient enough for real-time interaction.

9.3. Non-anthropomorphic characters or objects

Non-anthropomorphic characters contain articulations that are dif-
ficult to match with human data (e.g. snakes, insects, multi-legged
animals, dragons), as well as other objects that allow some degrees
of articulation (e.g. a rope). It is extremely difficult to create large
databases that consist of all feasible movements for each individual
creature or object; in some cases, it is even challenging to capture
the subject (e.g. insects), or there are no similar real creatures in
nature (e.g. virtual characters in cartoons). This is also valid for
virtual human-like creatures that have extra articulated parts (e.g., a
tail). Thus, data-driven methods seem to be less convenient methods
to use in these cases.

The best way to deal with non-anthropomorphic objects is to in-
tegrate the most suitable method for the specific problem; different
articulations can be treated differently, based on the properties of the
kinematic chain(s). When applicable, the problem can be divided
into parts and the most appropriate method can be applied in a hier-
archical and sequential fashion. Hybrid methods, such as [TGB00,
SLSG01, KMA05] and [UPBS08], can be adjusted to deal with car-
toony and monster-looking characters. On the other hand, heuristic
methods offer smooth looking motion in more simplistic problems.
For instance, since FABRIK is computationally efficient, flexible
enough to be adapted to different models, and able to control multi-
ple end effectors, it seems to be a good choice for animating, in real
time, single kinematic chains with limited or no constraints (e.g.
tails), or kinematic chains with multiple end effectors (e.g. insects).
CCD is also very popular for single kinematic chains due to its
efficiency; however, it suffers from poor motion distribution, while
the rolling and unrolling of the chain before reaching the target
can lead to unnatural poses. The Jacobian methods are also effec-
tive in animating single and multiple end effectors; for instance,
Li et al. [LABK17] designed cable-driven mechanisms to perform
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push and pick-and-place tasks using a Jacobian-based morphol-
ogy optimization process. However, they generally converge slowly
since they use a linear approximation with a small step (changing
the step size may result in undesirable oscillations and disconti-
nuities). The approximation used in SVD-DLS converges slightly
faster than its Jacobian counterparts, but the Jacobian transpose and
SDLS returns the smoothest motion.

For the production of natural animation and locomotion for
non-anthropometric characters, the design of the model’s skele-
ton and the IK selection should take into consideration the mor-
phology and musculoskeletal structure of the creature. There are
many papers that deal with the animation of such complex crea-
tures, e.g. bipedals [GvdPvdS13], quadrupeds [KRFC09, CKJ*11],
insects [FJT13] or the swimming behaviour for given articulated
creatures [TGTL11], which are mainly designed via incorporating a
physically based Jacobian IK solver. For more complex structures,
which consist of many articulated parts, the use of hybrid methods
is recommended.

Other factors that are important for non-anthropomorphic charac-
ters are scalability and handling of multiple end effectors. Scalability
is usually measured by how general the system can be made, and its
capability to be adjusted and customized to cope with different prob-
lems; the computational time needed to solve problems with large
kinematic chains, and the resulting accuracy, play an important role
for this evaluation. Fêdor [F0̂3] explores the balance between speed,
accuracy and scalability in a number of methods. More specifically,
the analytical methods tend to suffer from poor scalability; slight
changes in the problem or the model used require complete re-design
of the solution. Similarly, even though the data-driven methods can
be efficiently down-scaled to partitions, their capability to be up-
scaled or adapted into models with different skeletal structure is
limited and highly dependent on the training data. For models with
different structure, new training sessions must be performed. On
the other hand, the Jacobian and Newton methods can be easily
adjusted to problems with different kinematic chains, but the time
required for convergence increases as the number of joints and
DoFs grows. Similarly, FABRIK is easily adaptable to models with
different structures and multiple end effectors; unlike CCD whose
performance and convergence speed are reduced, FABRIK’s com-
putational time changes little when the kinematic chain increases.
Finally, scaling hybrid methods, even though not straightforward,
can be used by re-defining and re-adjusting the model’s structure,
priorities and hierarchies.

9.4. Future directions

IK is a well-known problem that has challenged researchers for
many years. Nevertheless, the fast evolving technology in computer
graphics and the increasing use of virtual characters in interactive
and entertainment applications create challenging research ques-
tions that need to be studied/answered.

Motion capture technology has been used extensively to capture
the movement and portray it as a 3D virtual representation. However,
one of the main limitations of this technology is that only realistic
motions can be captured, while directors sometimes want their char-
acters to have a non-realistic look and behaviour. In this context, IK

techniques can be employed for partial-body motion synthesis, so
as to create new actions from existing movements. In addition, they
can be incorporated to efficiently synthesize movements, avoiding
common problems such as foot skating and oscillations. While mo-
tion capture is a useful tool for 3D animation, sometimes, it does
not give the director enough control over the subtleties of an ani-
mation. For example, it is not possible to add more expression to
a pre-captured motion. The ability to automatically adapt captured
movements into characters with different style, behaviour, gender,
age, etc., is an important aspect that needs further investigation;
therefore, IK algorithms should be improved to offer directors a
greater degree of flexibility and the ability to control stylistic varia-
tions of the animation (e.g. [HSK16]).

One of the most significant applications of IK is real-time skele-
tal re-targeting, which is essential for mapping movements captured
from one character onto another with different proportions (taller,
smaller, longer legs, etc.). Most re-targeting techniques suffer from
flying, penetrating and skating due to the differences in the skeletal
configurations and/or bone lengths. In addition, motion re-targeting
must ensure that contact constraints are satisfied. In this direction,
it is essential to study methods that automatically adapt skeletons
undergoing complex deformations into different input meshes, pre-
serving the essence of motion naturally and without oscillations
(e.g. [MGDB17]). They should also be able to re-establish violated
constraints that may occur. Future research directions should focus
on achieving a smooth transition between skeletons with fundamen-
tally different joint constraints (e.g. biped to quadruped), entirely
different skeletal structure, different body proportions, way of move-
ment and behaviour. Another way to address the design of efficient
locomotion controllers, which requires no other a priori information
other than the mechanical structure of the creature, is deep learning;
a great effort has been devoted in this direction over the last few
years [PBYvdP17, HKS17].

More consideration should also be given to ways of incorporating
more anatomical and physiological constraints, aiming to limit the
resulting postures to a feasible set and allowing physically based
animations (e.g. [RK16]). Further investigation is also needed to
consider small changes in limb size (e.g. by adding a spring/mass
model), in addition to biomechanical laws, such as the force and
energy needed to accomplish a task, with the intention of adding
extra realism in human animation. Nevertheless, there is also a
question of how much the chain can be expanded or shrunk (keeping
the human anatomy and constraints) without the user perceiving the
change [HRvdP04].

Komura et al. [KSK01] has solved the IK redundancy by using
a criterion of minimum muscle-force change; however, the effect
of muscles, different passive torques, etc., has not yet been fully
studied. IK methods must be advanced in order to deal with hu-
man body shapes, taking into consideration anatomy principles and
musculoskeletal models. Recent works on skeletal muscle and sub-
cutaneous fat growth, such as [SZK15], have revealed new chal-
lenges which need to be dealt with. Muscle and fat modelling re-
quires computation and anatomical effort to keep the appropriate
deformation of the body shape; when the muscle and fat quan-
tity change not only are the volumetric and surface models af-
fected, but also the human skeletal structure and the movement
style.
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10. Conclusion

In this paper, we have surveyed some of the most popular IK solvers,
emphasizing, but not limiting, the discussion to approaches from a
computer graphics point of view. We describe where the research
in IK has been focused in the past, how it has progressed over the
years and indicate reasons for such progression. The main scope
of this survey is to offer a guide that highlights the advantages and
disadvantages of key IK solvers, giving indications about which
method is best suited to solve different problems. It aims to introduce
IK to new researchers that aim to optimize their IK-based projects.
Finally, it provides future directions to extend current limitations,
and research challenges that need further investigation.
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L., BOULIC R., THALMANN D., MÉZIAT D.: Towards configurable
motion capture with prioritized inverse kinematics. In Proceed-
ings of third International Workshop on Virtual Rehabilitation
(Laussane, Switzerland, 2004).

[PR13] PODDIGHE R., ROOS N.: A NAO robot paying tic-tac-
toe: Comparing alternative methods for Inverse Kinematics. In
BNAIC’13: Proceedings of the 25th Belgium-Netherlands Artifi-
cial Intelligence Conference (November 2013).

[PSM88] PAUL R. P., SHIMANO B., MAYER G. E.: Kinematic control
equations for simple manipulators. IEEE Transactions on System,
Man and Cybernetics 11, 6 (1988), 449–455.

[PTWF92] PRESS W. H., TEUKOLSKI S. A., WETTERLING W. T., FLAN-
NERY B. P.: Numerical Recipees in C (2nd edition). Cambridge
Press, Cambridge, 1992.

[Qui94] QUINLAN S.: Efficient distance computation between non-
convex objects. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation (1994), vol. 4, pp. 3324–3329.

[RB09] RAUNHARDT D., BOULIC R.: Motion constraint. The Visual
Computer 25, 5–7 (April 2009), 509–518.

[RGBC96] ROSE C., GUENTER B., BODENHEIMER B., COHEN M. F.:
Efficient generation of motion transitions using spacetime con-
straints. In SIGGRAPH ’96: Proceedings of the 23rd Annual
Conference on Computer Graphics and Interactive Techniques
(NY, USA, 1996), ACM, pp. 147–154.

[RISC01] ROSE III C. F., SLOAN P.-P. J., COHEN M. F.: Artist-
directed inverse-kinematics using radial basis function interpola-
tion. Computer Graphics Forum 20, 3 (2001), 239–250.

[RK16] RABBANI A., KRY P.: Physik: Physically plausible and intu-
itive keyframing. In GI ’16: Proceedings of the 42nd Graphics
Interface Conference (School of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada, 2016), Canadian Human-
Computer Communications Society, pp. 153–161.

[Roo17] Root-Motion: FINAL-IK: http://root-motion.com/, ac-
cessed January 2017, 2017.

[RPE*05] REN L., PATRICK A., EFROS A. A., HODGINS J. K., REHG J.
M.: A data-driven approach to quantifying natural human motion.
ACM Transactions on Graphics 24, 3 (July 2005), 1090–1097.

[RR93] RAGHAVAN M., ROTH B.: Inverse kinematics of the general 6r
manipulator and related linkages. ASME Journal of Mechanical
Design 115, 3 (1993), 502–508.

[RSG10] ROLF M., STEIL J., GIENGER M.: Goal babbling permits
direct learning of inverse kinematics. IEEE Transactions on Au-
tonomous Mental Development 2, 3 (September 2010), 216–229.

[RTK*15] RHODIN H., TOMPKIN J., KIM K. I., DE AGUIAR E., PFISTER

H., SEIDEL H.-P., THEOBALT C.: Generalizing wave gestures from
sparse examples for real-time character control. ACM Transac-
tions on Graphics 34, 6 (October 2015), 181:1–181:12.

[SH08] SLYPER R., HODGINS J. K.: Action capture with ac-
celerometers. In SCA ’08: Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation
(Aire-la-Ville, Switzerland, 2008), Eurographics Association, pp.
193–199.

[SH12] SHUM H., HO E. S.: Real-time physical modelling of charac-
ter movements with microsoft kinect. In VRST’12: Proceedings
of the ACM Symposium on Virtual Reality Software and Technol-
ogy (NY, USA, 2012), ACM, pp. 17–24.

[Sic90] SICILIANO B.: A closed-loop inverse kinematic scheme for
on-line joint-based robot control. Robotica 8 (7 1990), 231–
243.

[Sim94] SIMS K.: Evolving virtual creatures. In SIGGRAPH ’94:
Proceedings of the 21st Annual Conference on Computer Graph-
ics and Interactive Techniques (NY, USA, 1994), ACM, pp. 15–
22.

[SK16] SICILIANO B., KHATIB O.: Springer Handbook of Robotics
(2nd edition). Springer, Berlin/New York, 2016.

[SL11] SHAPIRO A., LEE S.-H.: Practical character physics for ani-
mators. IEEE Computer Graphics and Applications 31, 4 (July
2011), 45–55.

[SLSG01] SHIN H. J., LEE J., SHIN S. Y., GLEICHER M.: Computer
puppetry: An importance-based approach. ACM Transactions on
Graphics 20, 2 (April 2001), 67–94.

[SMM14] SAPRA R., MATHEW M., MAJUMDER S.: A solution to in-
verse kinematics problem using the concept of sampling impor-
tance resampling. In Proceedings of 4th International Conference
on Advanced Computing Communication Technologies (ACCT)
(February 2014), pp. 471–477.

[SPO10] SCHVARTZMAN S. C., PÉREZ A. G., OTADUY M. A.: Star-
contours for efficient hierarchical self-collision detection. ACM
Transactions on Graphics 29, 4 (July 2010), 1–8.

[SS91] SICILIANO B., SLOTINE J.-J.: A general framework for manag-
ing multiple tasks in highly redundant robotic systems. In Pro-
ceedings of the International Conference on Advanced Robotics,
ICAR (June 1991), vol. 2, pp. 1211–1216.

[ST13] SAPP B., TASKAR B.: Modec: Multimodal decomposable
models for human pose estimation. In CVPR ’13: Proceedings
of the 2013 IEEE Conference on Computer Vision and Pattern
Recognition (Washington, DC, USA, 2013), IEEE Computer So-
ciety, pp. 3674–3681.

[SYLH10] SOK K. W., YAMANE K., LEE J., HODGINS J.: Editing dy-
namic human motions via momentum and force. In SCA ’10: Pro-
ceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (Aire-la-Ville, Switzerland, Switzer-
land, 2010), Eurographics Association, pp. 11–20.

[SZGP05] SUMNER R. W., ZWICKER M., GOTSMAN C., POPOVIĆ J.:
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