
20

Folk Dance Evaluation Using Laban Movement Analysis
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Motion capture (mocap) technology is an efficient method for digitizing art performances, and is becoming increasingly popu-
lar in the preservation and dissemination of dance performances. Although technically the captured data can be of very high
quality, dancing allows stylistic variations and improvisations that cannot be easily identified. The majority of motion analysis
algorithms are based on ad-hoc quantitative metrics, thus do not usually provide insights on style qualities of a performance.
In this work, we present a framework based on the principles of Laban Movement Analysis (LMA) that aims to identify style
qualities in dance motions. The proposed algorithm uses a feature space that aims to capture the four LMA components (BODY,
EFFORT, SHAPE, SPACE), and can be subsequently used for motion comparison and evaluation. We have designed and implemented
a prototype virtual reality simulator for teaching folk dances in which users can preview dance segments performed by a 3D
avatar and repeat them. The user’s movements are captured and compared to the folk dance template motions; then, intuitive
feedback is provided to the user based on the LMA components. The results demonstrate the effectiveness of our system, opening
new horizons for automatic motion and dance evaluation processes.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Animation
General Terms: Folk Dance Evaluation Using LMA

Additional Key Words and Phrases: Folk dances, Laban Movement Analysis, motion capture, motion comparison, motion
evaluation

ACM Reference Format:
Andreas Aristidou, Efstathios Stavrakis, Panayiotis Charalambous, Yiorgos Chrysanthou, and Stephania Loizidou Himona.
2015. Folk dance evaluation using laban movement analysis. ACM J. Comput. Cult. Herit. 8, 4, Article 20 (August 2015), 19
pages.
DOI: http://dx.doi.org/10.1145/2755566

1. INTRODUCTION

Intangible Cultural Heritage (ICH) is an integral part of the cultural identity of any society. ICH en-
compasses collective knowledge of communities, skills, practices, expressions, and representations that
do not have a tangible form. In this work, we focus on devising state-of-the-art methods for digitization,
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analysis, and dissemination of folk dances. We demonstrate our methods using Cypriot folk dancing as
a representative use case.

Folk dances are learned informally and passed on from one generation to the next. The main dif-
ference between choreographed dances and folk dances is that the latter are often improvisations by
nonprofessionals that take place in social events and other daily life activities. Folk dancing is a rather
“malleable” form of ICH, as it is modified and adapted over time and across different geographic loca-
tions. Although each folk dance has a basic set of steps and postures that dominate, folk dancers will
typically modify and often enrich the dance with their personal style. The implication of these stylistic
mutations is that there is no single ground truth for a folk dance.

There are various methods one can use to learn dancing. For example, one may use a self-learning
approach, for example, by utilizing books and videos or attending a class and learning from an experi-
enced instructor [Kassing and Jay 2003]. Brain research based on dance learning experiments provided
evidence that learning to dance is facilitated through both physical and observational learning [Cross
et al. 2009]. Irrespective of the learning method, dance students usually learn the choreographic as-
pects of the dance faster, for example, the basic steps and postures, but take longer to master the
dynamics of movement (e.g., flow, weight, and the like)

Motion capture technology has enabled the documentation and preservation of ICH artifacts such
as folk dances. However, digitization alone is not sufficient to pass folk dancing to the newer genera-
tions. Therefore, interactive virtual reality 3D applications, for example, games [Tang et al. 2011] and
dance learning platforms [Magnenat-Thalmann et al. 2008], have emerged as teaching aids for users
wishing to learn how to perform these dances. Dance teaching applications usually feature a virtual
3D teacher who first performs a prerecorded expertly executed dance or segment of a dance. The user
will then perform this motion physically while being monitored by a motion capture system attached
to the application. The motion is then analyzed and compared to the teacher’s motion, and the user is
provided with feedback.

One of the main aspects of motion analysis is the understanding of different types of human move-
ments, such as basic human actions (e.g., walking, running, or jumping) and stylistic variations (e.g.,
emotion, intention, expression, or gender). Stylistic variations, though, are difficult to measure; the
movement of the human body is complex and hard to completely describe. An important role in the
description and categorization of a dance performance is that played by the intensity and fluidity of
each movement, reflecting its nuance. The nuance, along with the shape, concentration, and energy
needed to carry out the action, can provide additional information with regard to the style of the per-
formance. General purpose motion evaluation algorithms are limited in their capacity to acquire the
stylistic elements of dance performances (e.g., the emotion, expression, and interaction between the
performer and the environment); however, choreographers and movement analysts take into consid-
eration movement characteristics that show the style of the dance, which play an important role in
the evaluation of movements. Based on the principles of movement observation science, specifically
using Laban Movement Analysis (LMA) [Laban 2011; Maletić 1987] components, we aim to extract
the so-called nuance of motion and use it for motion comparison and evaluation purposes. LMA is a
multidisciplinary system, incorporating contributions from anatomy, kinesiology, and psychology that
draws on Rudolph Laban’s theories to describe, interpret, and document human movements. It is one of
the most widely used systems of human movement analysis, and has been used extensively to describe
and document dance and choreography over the last century.

In contrast to previous approaches that compare and evaluate dances, our technique uses LMA to
qualitatively assess the similarity of two dancing motions. It determines characteristics that a student
would find useful for the improvement of one’s skills. For example, we do not report the angular offset
of a student’s limbs in comparison to the teacher’s. Instead, our system generates higher-level hints,

ACM Journal on Computing and Cultural Heritage, Vol. 8, No. 4, Article 20, Publication date: August 2015.



Folk Dance Evaluation Using Laban Movement Analysis • 20:3

such as a percentage of correctness in the flow and intensity of the motion inferred from a large set
of low-level motion features. This approach of intuitively exposing the quality aspects of the student’s
motion makes it easier for that student to focus on improving a particular aspect of one’s performing
skills, for example, overall posture or speed, rather than a specific body part.

2. RELATED WORK

Motion matching or comparing algorithms typically use discrete motion samples that represent body
postures to compute an aggregate distance metric between the two postures. In literature, the major-
ity of methods can be grouped into those using (i) the distances between the positions of body joints,
(ii) the angular differences between respective joint pairs, and (iii) the velocities of respective joints, or
a combination of these methods. Various techniques in the area of indexing, classification, and synthe-
sis search for logical similarities between motions; for instance, Motion Graphs [Kovar and Gleicher
2004] is a data structure widely used to compare motion clips (i.e., using distance metrics between
postures) and represent transitions between them for motion synthesis. A variety of different metrics
that capture and compare the geometric properties of motion were introduced by Müller et al. [2005] to
establish a content-based retrieval method for motion similarity purposes; different techniques have
also been proposed for spatial indexing of motion data [Keogh et al. 2004; Krüger et al. 2010]. More-
over, Deng et al. [2009] and Wu et al. [2009] cluster motion on hierarchically structured body segments,
whereas Chao et al. [2012] use a set of orthonormal spherical harmonic functions.

In order to achieve a satisfying simulation for complex human body language, an as simple as possi-
ble but as complex as necessary description of human motion is required; LMA satisfies these demands.
The principles of LMA have been used in computer animation for over a decade. The EMOTE system,
introduced by Chi et al. [2000], synthesizes gestures using the LMA effort component for motion pa-
rameterization and expression; Zhao and Badler [2005] used the EMOTE results to design a neural
network for gesture animation. Hartmann et al. [2006] quantify the expressive content of gesture
based on a review of the psychology literature, whereas Torresani et al. [2006] used LMA for learning
motion styles. Chen et al. [2011] emphasized Laban’s effort quality for movement analysis and eval-
uation to construct an e-learning system, whereas Wakayama et al. [2010] and Okajima et al. [2012]
used a subset of LMA features for motion retrieval. Kapadia et al. [2013] proposed a variety of features
based on Laban principles to encode structural, geometric, and dynamic characteristics of motion as
keys; these keys are later combined to define queries for motion retrieval. Santos and Dias [2010] pre-
sented a tool that uses Laban theories to describe human basic behavior patterns. Masuda et al. [2009]
also expressed the bodily emotion of a human-form robot using a small set of Laban’s features. Later,
the same authors added four basic emotions to arbitrary movements [Masuda et al. 2010]. Recently,
Zacharatos et al. [2013] used a set of body motion features based on the LMA effort component, to
provide sets of classifiers for emotion recognition in a game scenario. A set of 3D gesture descriptors,
based on an LMA model, have been utilized by Truong et al. [2015] as well to recognize the gesture
and emotional content of orchestra conductors using a machine-learning framework.

The wide range of existing techniques for general-purpose motion analysis, segmentation, classifica-
tion, and retrieval may also be applied to motion-captured dances. However, the scientific community
has recently focused on explicitly devising methods to cater to dance-oriented applications, such as
dance teaching and dancing games, as well as extraction of choreography, dance annotation, compari-
son, and so forth. When evaluating dancing motions for educational purposes, the teacher’s and the stu-
dent’s motions can be qualitatively similar, although they may technically differ. Magnenat-Thalmann
et al. [2008] designed a learning framework for folk dances based on motion capture. They treated
the concept of dance holistically without discriminating between movement and context. Within the
context of this framework, they developed a Web-based 3D environment in which users can visualize
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folk dances. Alexiadis and Daras [2014] have recently designed a framework for automatic dance per-
formance evaluation that employs motion capture data using marker-less motion capture. The authors
represented the human motion data as sequences of pure quaternions and subsequently introduced
a set of quaternionic vector-signal processing methodologies for dance motion evaluation and compar-
ison purposes. Tang et al. [2011] implemented a real-time dancing game using a Progressive-Block
Matching algorithm. In addition, Chan et al. [2011] presented a similar system, but focused on per-
forming a comprehensive motion analysis of the player’s body parts with respect to the taught-motion
template. Deng et al. [2011] developed a real-time motion recognition algorithm that is based on a
human body partition indexing scheme with flexible matching to determine the end of a move as well
as to detect unwanted motion. This work has been furthered by Yang et al. [2013] to provide tools for
automatically generating dance lessons that adapt to the skill of the student dancer. Laban theory has
also been used for synthesizing dance motion matched to music [Shiratori et al. 2006]. Aristidou and
Chrysanthou [2013] used a variety of LMA features that encode characteristics of motion to under-
stand the performer emotions from acted dance performances. Aristidou and Chrysanthou [2014] have
provided a brief analysis of how these features change on movements with different emotional states,
finding movement similarities between different emotional states. Recently, Aristidou et al. [2014] pre-
sented an LMA-based query-by-example motion retrieval method from a folk dance database.

3. MOTION ANALYSIS

In this work, we have developed a novel motion comparison algorithm, which compares the move-
ments of two characters by taking into consideration not only posture matching (meaning the physical
geometry of the avatar) but also style. The proposed evaluation extracts the quality characteristics of
a dance performance based on LMA. LMA offers a documentation of human motion, divided into four
main categories: BODY, EFFORT, SHAPE, and SPACE. In this section, we present a subset of the LMA
components and representative features that are indicative to capture the motion properties, and can
be used for motion comparison purposes. The proposed LMA features are calculated to be used for mo-
tion comparison and evaluation purposes; the key joints used for the description of the proposed LMA
features are indicated in Figure 1(b).

3.1 BODY Component

The BODY component primarily develops body and body/space connections. It describes the structural
and physical characteristics of the human body and is responsible for describing which body parts are
moving, which parts are connected, which parts are influenced by others, what is the sequence of the
movement between the body parts, and general statements about body organization. We propose the
following features to define the BODY component and address the orchestration of the body parts:

—Displacement and Orientations: Different displacements, such as feet to hips distance ( f1), hands to
shoulders distance ( f2), right hand to left hand distance ( f3), hands to head distance ( f4), and hands
to hips distance ( f5), are used to capture the body connectivity and the relation between body parts
of the performer.

—Pelvis height ( f6): The distance of the root joint from the ground, in our skeleton the pelvis; this
feature is particularly useful for specifying whether the performer kneels, jumps in the air, or falls
to the ground.

—Legs and Body relation to ground ( f7): This is the distance of the hips to the ground minus the
distance of the feet to the hips, which provides a metric for relation of the body’s posture and the
extention of the legs from the body.
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Fig. 1. (a) A dance performer wearing the mocap suit and performing Zeibekiko at our laboratory. (b) Representation of the
articulated skeletal structure used to calculate the LMA features. Key joints used in the calculations are clearly indicated.

—Gait size ( f8): Gait size is the distance of the right foot to the left. The size of a human gait may be
indicative of motion expression, emotion, style, and so forth.

Note that all distances involving joints both from the left and right side of the human skeleton
( f1 − f5, f7) are calculated symmetrically and averaged. For example, ( f1) feet to hips distance is the
average Euclidean distance of the left foot to the left hip and the right foot to the right hip, that is,
f1 = (d(Lf oot, Lhip) + d(Rf oot, Rhip))/2. Calculating the average of these distances weights equally the
two sides of the body and provides a balanced set of metrics to describe the geometry of the performer’s
body. It would also be possible to introduce features independently for each side of the body, especially
for subvolume motion comparison and motion synthesis approaches.

3.2 EFFORT Component

The EFFORT component describes the intention and the dynamic quality of the movement, texture,
feeling tone, and how the energy is being used on each motion. It comprises four subcategories—each
having two polarities—named EFFORT factors:

—Space addresses the quality of active attention to the surroundings. It has two polarities: Direct
(focused and specific) and Indirect (multi-focused and flexible attention).

—Weight is a sensing factor, sensing the physical mass and its relationship with gravity. It is related
to movement impact and has two dimensions: Strong (bold, forceful) and Light (delicate, sensitive).

—Time is the inner attitude of the body towards the time, not the duration, of the movement. Time
polarities are Sudden (has a sense of urgent, staccato, unexpected, isolated) and Sustained (has a
quality of stretching the time, legato, leisurely).

—Flow is the continuity of the movement; it is related to feelings and progression. The Flow dimensions
are Bound (controlled, careful, and restrained movement) and Free (released, outpouring, and fluid
movement).

EFFORT changes are generally related to the changes of mood or emotion, and are essential for ex-
pressivity. The EFFORT factors can be derived as follows:
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—Head orientation ( f9): The Space factor can be derived by studying the attitude and orientation of the
body in relation to the direction of the motion. If the character is moving in the same direction as the
head orientation, then the movement is classified as Direct, whereas if the orientation of the head
does not coincide with the direction of the motion, then this movement is classified as Indirect. To
this end, we calculate the angle between the head’s orientation and the body path of the performer,
which is expressed by the trajectory of the root joint.

—Deceleration of motion ( f10): The Weight factor can be identified by studying how the deceleration
of motion varies over time; f10 is estimated by calculating the deceleration of the root joint. Peaks
in decelerations means a movement with Strong Weight, while no peaks refers to a movement with
Light Weight; note that Weight is velocity independent.

—Movement velocity: The velocity of the performer’s movement is indicative of the Time factor. It is es-
timated by calculating the distance covered by the root joint over a time period ( f11). In addition, the
average velocity of both hands ( f12) and both feet ( f13) is calculated to distinguish dance movements
for which the performer remains at the same position, while the choreography is mainly expressed
by changes in body postures.

—Movement acceleration ( f14 − f16): The acceleration is another feature for determining the Time fac-
tor; it is computed by taking the derivative of the aforementioned movement velocities with respect
to time; with f14 the hips’ acceleration, f15 the hands’ acceleration, and f16 the feet’s acceleration.

—Jerk ( f17): A way to extract the Flow of each movement is jerk. Jerk is the rate of changes of ac-
celeration or force, calculated by taking the derivative of the acceleration ( f14) with respect to time.
Bound motion has large discontinuities with high jerk, whereas Free motion has little change in
acceleration.

3.3 SHAPE Component

SHAPE analyzes the way the body changes shape during movement. It describes the static shapes that
the body takes, the relation of the body to itself, the way the body is changing toward some point in
space, and the way the torso can change in shape to support movements in the rest of the body. SHAPE

can be captured using the following features:

—Volume: The volume of the performer’s skeleton ( f18) is given by calculating the bounding volume
of the five end-effector joints (i.e., head, hands, and feet). In addition, the volume of the skeleton is
calculated as the bounding volume of all joints ( f19), which enables one to distinguish cases in which
hands and/or legs are very close to each other, but the performer’s overall volume is still large. In
addition, the bodily volume of the performer is subdivided into 4 subvolumes: upper body ( f20), lower
body ( f21), left side ( f22), and right side ( f23).

—Torso height ( f24): The distance between the head and root joints indicates whether the performer is
crouching, meaning bending the torso; it does not take into account whether the legs are bent, but
only whether the torso is kept straight or not.

—Hands level ( f25): The relation of the hands’ position with regards to the body, indicating whether
they are moving on the upper level of the body (over the head), the middle level (between the head
and the chest), or the low level (below the chest). The hands’ orbit level is calculated even if the
performer is crouching, kneeling, or jumping.

3.4 SPACE Component

SPACE describes movement in relation with the environment, pathways, and lines of spatial tension. La-
ban classified the principles for movement orientation based on the body kinesphere (the space within
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reach of the body, the mover’s own personal sphere) and body dynamosphere (the space where the body’s
actions take place, the general space that is an important part of personal style). SPACE component can
be derived using two different features:

—Distance ( f26): The distance covered over time, which is measured as the length of the projection of
the root joint’s trajectory to the ground. This prevents vertical translation, for example, jumping,
from mistakenly considered as space coverage by the performer.

—Area ( f27): The total area covered over a time period, which is calculated as the area of the polygon
formed by the projection of the root joint to the ground.

Combining f26 and f27 provides an indication of the relationship of the performer’s feelings with
regard to the environment. In addition, this combination is a measure of the utilization of the allowable
space a performer achieves with one’s movements.

4. MOTION COMPARISON

The proposed LMA features can be used to extract information regarding the dance performance, tak-
ing into consideration both body variations and style of the performance. In that manner, we are able
to evaluate a dance performance and find potential similarities with another, even if the performers’
posture geometries have significant differences. In order to assess two performances and find their
potential similarities, we have implemented a motion comparison framework.

To extract the proposed LMA features and measure the observations, each motion clip frame is
filtered with a 35-frame moving window (clips have 30fps), anchored at the center. We use a window
stepping of 1, but this can be increased to speed up computation at the expense of accuracy. In this
work, we assume that the clips are already synchronized. A variety of feature measurements were
calculated for each of the fis comprising the features of the LMA components, such as the maximum,
minimum, mean and standard deviation, resulting in 87 different feature measurements (φis). These
feature measurements are summarized in Table I.

For each window of a motion clip, a correlation matrix is computed to the respective window of the
other clip, which provides an association between the time windows of the two motions. The correlation
matrix measures the absolute values of Pearson’s linear correlation coefficient [Pearson 1920], (0, no
correlation; 1, high correlation). To evaluate the correlation between two performances, each of the
four LMA components has been assessed separately for each window, returning a Pearson’s linear
correlation coefficient for each LMA component; the overall evaluation for a window is a weighted
sum of all its LMA components. The weights are user-defined and provide a mechanism to control
the importance of each LMA component when comparing motions. For example, the weights used for
each of the four LMA components can be set to 25% to weight them equally. The overall correlations
computed in each window are then filtered to reduce noise with a 1D Gaussian function with mean
μ = 0 and variance σ 2 = 1. These correlations provide an estimate of the relevance between the
windows of the two performances based on the LMA components. Two windows (or frames, as in our
case) are considered similar if their overall Pearson’s linear correlation coefficient is larger than a user-
specified threshold, which we refer to as the decision threshold, and is usually set to values higher than
75%.

4.1 Isomap Representation of LMA features

As we mentioned in Section 3, the set of proposed features should be able to capture the motion prop-
erties so that meaningful comparisons can be performed. Since our feature space is high dimensional
(87 features), it is difficult to visualize the data and understand their properties. Typically, methods
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Table I. The Measurements Used in our Implementation

fs
Measurement

Description max min mean std #

BODY

f1 Feet–hip distance φ1 φ2 φ3 φ4

f2 Hands–shoulder distance φ5 φ6 φ7 φ8

f3 Hands distance φ9 φ10 φ11 φ12

f4 Hands–head distance φ13 φ14 φ15 φ16

f5 Hands–hip distance φ17 φ18 φ19 φ20

f6 Hip–ground distance φ21 φ21 φ23 φ24

f7 Hip–ground minus feet–hip distance φ25 φ26 φ27 φ28

f8 Gait size φ29 φ30 φ31 φ32

EFFORT

f9 Head orientation φ33 φ34 φ35 φ36

f10 Deceleration peaks φ37

f11 Hip velocity φ38 φ39 φ40

f12 Hands velocity φ41 φ42 φ43

f13 Feet velocity φ44 φ45 φ46

f14 Hip acceleration φ47 φ48

f15 Hands acceleration φ49 φ50

f16 Feet acceleration φ51 φ52

f17 Jerk φ53 φ54

SHAPE

f18 Volume (5 joints) φ55 φ56 φ57 φ58

f19 Volume (All joints) φ59 φ60 φ61 φ62

f20 Volume (upper body) φ63 φ64 φ65 φ66

f21 Volume (lower body) φ67 φ68 φ69 φ70

f22 Volume (left side) φ71 φ72 φ73 φ74

f23 Volume (right side) φ75 φ76 φ77 φ78

f24 Torso height φ79 φ80 φ81 φ82

f25 Hands level φ83 - φ85

SPACE
f26 Total distance φ86

f27 Total area φ87

that project the data into lower-dimensional spaces (e.g., 2 or 3 dimensions) aim at providing visual
representations of the data by preserving interesting structures to aid interpretation.

These methods fall into two main categories: linear and nonlinear. One of the most common linear
projection methods is Principal Component Analysis (PCA) that projects the data into a new space
that is a linear combination of the original features. These methods, however, fail to capture impor-
tant nonlinear structure in the data. Nonlinear dimensionality reduction approaches assume that the
examined data lie on an embedded nonlinear manifold within the high-dimensional space (i.e., the
data are artificially high dimensional). In essence, these methods try to find the “intrinsic” variables
that really were the cause of the original data. One of the most common approaches in this category
is the isomap technique [Tenenbaum et al. 2000] that aims to project the data based on the geodesic
distances1 between neighboring data points.

Figures 2(a) through 2(d) show the projections of two dance performances for different subsets of
the LMA features. These performances are of the same dance, which was intentionally performed at

1The geodesic distance between two vertices of a graph is the number of edges belonging to the shortest path between them,
assuming the graph is connected.
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Fig. 2. Isomap projection of LMA features of the same dance performed at different intensities. Each connected line represents
a performance. X marks the first set of projected features and the lines indicate temporal relationships between points (i.e., the
trajectory of the LMA features). Points are a subset of the data points (every 0.5s, 15 frames). It can be observed that although
some of the LMA components have asimilar structure and can be separated (a, b), the overall combination of LMA features
provides a more apparent separation (e).

Fig. 3. Isomap projection of LMA features of three dances. Red and blue represent the same dance performed at different
intensities. Green is a Zeibekiko dance, which is apparently very different from the other two. It can be observed in (e) that the
isomap projection of all LMA features combined cluster the two dances (red and blue), while separating the third (green).

different intensities. The projection of all LMA components combined is shown in Figure 2(e). The
struacture of this combined isomap suggests that the underlying motions share common characteris-
tics that are captured by the chosen LMA feature space. To further verify this, we show the isomap
projection of 3 datasets in Figure 3; the two datasets (red and blue) are the same as those of Figure 2,
while the third (green) is a rather different dance (Zeibekiko). Again, the isomap projection of some of
the LMA components group and separate the projected features, but the combined LMA components
seem to group the two first dances together, while setting apart the third.

These graphs indicate that the proposed LMA features capture similarities and dissimilarities be-
tween dance performances, and can be used as visual aids (e.g., could be adopted in a game’s user
interface to provide stylized feedback to players). However, a more complete analysis, such as classifi-
cation accuracy, could be employed in future work.

5. LMA-BASED DANCE LEARNING PLATFORM

Dancing is largely taught by example, with a teacher performing the movements and the student
repeating. Self-learning of dances has been mainly based on educational video material and, more
recently, video games. In line with other computer-based dance teaching systems in this section, we
present a prototype self-learning dance platform based on our LMA algorithmic framework. The plat-
form takes advantage of high-quality 3D motion capture data of folk dances and uses the motion
analysis algorithm presented in Section 3 to provide a set of quality parameters that can be tuned
to assess similarity between motions. Furthermore, using the motion comparison algorithm, the plat-
form directly leverages the intuitiveness of the LMA framework to provide user-friendly feedback and
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Fig. 4. Sample frames from motion-captured folk dances contributed to the Dance Motion Capture Database. From left to right,
it shows Zeibekiko, 1st, 2nd, and 3rd Antikristos, respectively.

parameter control. Note that the dance simulator does not intend to replace traditional dance tuition,
but to provide an additional tool for training and education in dance, both at home and at school, using
an interactive environment.

5.1 Mocap Folk Dance Data

In parallel to the technical contributions in this work, a considerable effort has been invested in digi-
tizing Cypriot folk dances, as well as acted modern dance performances. The data have been captured
using a PhaseSpace’s Impulse X2 motion capture system [PhaseSpace 2014], which allows for high-
frequency optical tracking of the dance performers (up to 960Hz). However, the quality of the data is
not only due to the technical equipment used. The performers were experienced dancers, the majority
of which were active members of cultural organizations and dance schools. Therefore, the motion-
captured folk dances document an integral part of Cypriot intangible cultural heritage, which were
up to now only documented via text, photographs, and video. These quality and culturally important
datasets have been submitted for the enrichment of the Dance Motion Capture Database2 [University
of Cyprus 2014], which has been initialized by Stavrakis et al. [2012], and can be viewed online using
the Unity3D Web plug-in in real time. Figure 4 shows snapshots from the folk dances we contributed
to the database.

Our datasets are comprised of Biovision Hierarchical (BVH) data files of dance performances that
are captured at 480Hz. The BVH format consists of two parts: the first section details the hierarchy
and initial pose of the skeleton, and the second section describes the channel data for each frame, thus
the motion section. It is important to note that the BVH skeletons in our dataset are normalized, thus
skeleton and joint distances, such as arm span and other displacements, are calculated under the same
conditions. Our analysis (Section 3) and comparison (Section 4) algorithms sample these datasets at
30fps, which provides sufficiently good results, but higher frame rates, if required, may unnecessarily
increase computation times.

5.2 Dance Learning Platform

The prototype learning platform is built around the concept of students observing a virtual 3D teacher
performing dance movements and repeating them. It uses quality motion-captured folk dance data
from the database, as described earlier. Motion data represent complex dance choreography, thus can
be difficult for beginners to perform all at once. Instead, the motion-captured data are segmented into
dance motion primitives, that is, short sequences of distinct movements that usually last between 400
and 900 frames. These motion primitives act as template motions, and can be reassembled into the
complete dance.

2Dance Motion Capture Database: http://dancedb.cs.ucy.ac.cy/.
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Fig. 5. Snapshots from our experimental data, in which the student (yellow) imitates the teacher’s (blue) movements.

During a dance learning session, the user selects the desired dance to learn and a 3D avatar (teacher)
selects arbitrary dance motion primitives from the template motions and demonstrates it to the user
(student). The user then physically performs the motion, which is captured and passed to the motion
analysis subsystem via a full-body motion-capture system. The user’s motion is analyzed and compared
to the template motion, and an evaluation of the user’s performance is generated.

In contrast to other dance learning systems, the user is not explicitly provided with feedback on body
parts that have been moving incorrectly. We believe that this type of feedback, although quite helpful,
can be daunting to beginners. For example, beginners usually find it easier to learn the body posture
(BODY) and steps (SPACE) of a dance, but may find it very difficult to reproduce the flow (EFFORT) and
shape qualities (SHAPE) of a dance. Instead, the platform generates an evaluation based on the LMA
categories (BODY, EFFORT, SHAPE, SPACE), which exactly point the student to the particular quality
characteristic of the performance that needs improvement. This way, our system can be considered as
more forgiving toward mistakes that could demoralize the student and play little educational role for
that student’s skill level, such as an incorrectly bend arm or a slightly misplaced foot.

Furthermore, the learning platform allows the user to modify the sensitivity of the system when
comparing the motion of the student to the template motions per LMA category. The four LMA cat-
egories are initially equally weighted (25% each). Users can manually adjust the weights to tilt the
sensitivity toward one of the LMA components of the dance that they would like to improve on. For
instance, users that are comfortable with their body posture may reduce the decision threshold for the
BODY and/or increase the threshold of the EFFORT to make the system more sensitive to mistakes in
the fluidity of their motion. In addition, the system can be set to adaptively modify the difficulty of
achieving a close match of the template motion. This follows the same principles of dynamic difficulty
adjustment (DDA) in computer games, with an outlook of focusing the user’s attention to aspects of the
motion that the user needs to improve on.

6. EXPERIMENTAL RESULTS

This section presents the experimental results of the proposed system. Students were asked to imi-
tate short parts of precaptured dance performances (performed by professional dancers), while their
performance was evaluated against the teacher’s performance using the proposed LMA-based motion
comparison approach. Figure 5 shows two snapshots from our video clips; the teacher (in blue) per-
forms a dance choreography, while the student (in yellow) tries to follow it.
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Fig. 6. The correlation between the movements of the teacher and student; the first four bars show the correlation for each
LMA component separately, while the next shows the overall correlation taking into consideration all the LMA components. The
correlation is presented in gray scale: white indicates a high correlation and black indicates no correlation between the motions.
The last two bars show the decision whether the movements under analysis are similar or not, that is, when their correlation is
higher than the decision threshold, which is set at 75% and 70%, respectively. Green indicates “pass,” while red indicates “fail.”

Figure 6 shows the correlation between a student and teacher performance for each LMA component
separately (in gray scale, white means high correlation and black means small correlation), as well as
the overall correlation when all LMA components are summed. The last two bars show the decision
regarding whether these two movements are similar for two cases, when the decision threshold was
set at 75% and 70%, respectively; when it is green, the decision is positive (above the threshold), while
when it is red the decision is negative (below the threshold). In addition, Figure 7 presents the same
example, indicating the correlation between the student and teacher performances with regard to the
BODY, EFFORT, SHAPE and SPACE components for each frame. It also states the overall correlation when
the weight for each component is set to 25%. For instance, in Figure 7, at frame 250, the BODY correla-
tion is 21.4/25, the EFFORT 24.3/25, the SHAPE 18.8/25, and SPACE 24.8/25, while the total correlation
is summed up to 89.3%. In contrast, at frame 170, the BODY correlation is 15.2/25, the EFFORT 13.9/25,
the SHAPE 19.1/25, and SPACE 15.5/25, ending at a total correlation of 63.7%. In order to evaluate the
ability of our approach to extract the qualitative characteristics of the movement, we asked a pro-
fessional dancer to perform the same choreography three times (bachatta dance), but each time with
a different intensity (I1 refers to movement with low intensity, while I3 to high intensity), as shown
in Figure 8. Note that, in all cases, the dance steps can be considered as correct, while the intensity
may indicate the dance style. Figure 9 shows the correlation between the performances for each LMA
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Fig. 7. An example that shows the correlation between the performance of the teacher and student.

Fig. 8. The dancer performs the same choreography, but each time with different intensity. Starting from the left to the right,
the red avatar presents the choreography with intensity I1, the green with I2, and the blue with I3.

component, as well as the overall correlation. In this example, we have observed that the BODY and
SHAPE components appear to have high correlation, especially when the I2 and I3 performances were
compared, unlike the EFFORT and SPACE, which have smaller correlation. This is more obvious when
the performances with intensity I1 and I3 were evaluated, which has greater variation in their motion
intensity.

The dance learning simulator also offers the possibility to choose different weights for each LMA
component, in order for the student to focus on individual problems and improve specific skills (based
on the LMA components), facilitating the learning of the dance. Figure 10 shows such an example,
where the correlation between the performances with intensity I1 and I3 have been evaluated, but
this time having different weights for each LMA component. For instance, looking at frame 50, it
can be observed that when all weights are equal (25% for each LMA component), the correlation is
64%. However, when the weights were set to 50% for the BODY and 16.67% for the other components,
the correlation increased to 74.6%. In contrast, when the weights were set to 50% for the EFFORT

and 16.67% for the rest, the correlation decreased to 50.8%. Keeping in mind that in the particular
set of performances the body movements of the dancer follow the choreography’s steps correctly and
primarily differ in the intensity of the movements, we conclude that our method can effectively extract
the qualitative and stylistic features of the motion.

An important aspect of our motion analysis algorithm is the ability to compare motions based
on parts of the skeletal structure of the performers instead of the whole body. More specifically, we
have further developed our method so that it can consider the upper and the lower part of the body
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Fig. 9. The correlation between three performances with different intensity (I) when the weight factor for each LMA component
is set to 25%: I1 indicates low intensity, while I3 indicates high intensityh. Top row shows I1 compared to I2, middle row shows
I1 compared to I3, and bottom row shows I2 compared to I3.

separately. This separation is particularly useful in dance learning, as it allows users to focus on a spe-
cific body part without having to perform the movements correctly in other parts; thus, the users may
concentrate on learning individual elements of the dance, such as the steps (emphasis in the lower part
of the body) or the expression (emphasis in upper part of the body). To achieve this, we have applied
a subset of the proposed features in two separate parts of the human skeleton: the upper part, which
includes the root, the spine, both arms and hands, as well as the head; and the lower part, which con-
tains the root, the hips, both legs and feet. To evaluate our methodology, we used the example in which
the dancer performs the same dance but with different intensities. Figure 11 shows the correlation
between two performances (I1 and I2). At the top row, measurements taking into consideration fea-
tures of the whole body are shown. The middle row shows measurements obtained by only considering
the upper body, and at the bottom row only the lower body is considered. Studying the correlations
over time, we observed that the lower body processing results in higher correlation than that of the
whole body, while processing the upper body results in lower correlations (e.g., in frame 265, the whole
body has a correlation of 82.8%, the upper body correlation is 69.4%, and the lower body correlation is
96.1%). Separating the evaluation into two parts offers the evaluator the ability to assess the dance
separately, so that the teacher and student can concentrate on specific points. For example, novices
usually focus on learning the steps of the dance, paying little attention to the movements involving
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Fig. 10. The correlation when two similar performances with different intensity are compared. Top row shows I1 compared to
I3 with weights BODY, EFFORT, SHAPE, and SPACE at 25%. Middle row shows I1 compared to I3 with weights BODY at 50%, while
EFFORT, SHAPE, and SPACE at 16.67%. Bottom row shows I1 compared to I3 with weights EFFORT at 50%, while BODY, SHAPE, and
SPACE at 16.67%.

their upper body. The usefulness of this selective analysis can also be applicable with inaccurate mo-
tion capture data, for example, data from a Microsoft Kinect device that may provide inaccurate or
incomplete samples (e.g., for the feet).

The proposed evaluation model allows further customization of the assessment criteria in accordance
with the anatomic characteristics of the trainee. Apparently, the trainee is not as fit as the trainer,
who is a professional dancer, nor has the same flexibility. For instance, the student may not have
the same stretching routine as the teacher, resulting in smaller openings (e.g., of the legs). Using the
proposed method, the weight of specific features can be selectively reduced (while others increased)
to have less impact on the overall evaluation of motion. In addition, by observing the maximum and
minimum values for specific features of the student’s and teacher’s performance (especially features
of the BODY component), we can use a proportional approach that considers the stretching capabilities
of the performer. Finally, it is important to note that head orientation ( f9), which offers indications
about the immediacy of motion, is not contributing in the evaluation process in cases in which the
student is an amateur. In such cases, in which the trainee does not know the steps of the dance and
the trainee’s head is constantly turned towards the screen, no additional information is offered with
regard to the style and quality of the movement, apart from the fact that the head is disoriented.
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Fig. 11. The correlation when two similar performances with different intensity are compared. Top row shows the correlation
when all features were used, middle row when only features of the upper body were used, and bottom row when only features of
the lower body were used.

7. CONCLUSIONS AND FUTURE WORK

In this article, we have presented a novel motion comparison algorithm, which compares the move-
ments of two avatars taking into consideration not only posture matching (meaning the physical geom-
etry of the avatar) but also style, including the required effort, shape, and interaction of the performer
with the environment. Theories that have been applied in movement analysis and education over the
last century have been studied and incorporated to establish algorithms for motion comparison and
evaluation. The results demonstrate the effectiveness of our method to extract qualitative and quanti-
tative characteristics of the movement, while dance performances can be evaluated based on the LMA
components. Our method is able to find correlations between different dance performances; it also of-
fers the possibility to compare two performances having different weights of influence for each LMA
component, giving the opportunity to the trainer, as well as the trainee, to adjust the dance teaching
simulator according to one’s needs. It may also help the user to identify potential errors in one’s per-
formance and improve specific skills. The algorithm may be used to focus only on certain body parts
(upper/lower body and left/right side), as well as the whole body.

Although our work was based on real high-quality motion-capture data, this is not a prerequisite
for utilizing the proposed motion analysis and evaluation algorithms. It would be possible to use
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motion-capture data obtained from alternative sources and even commodity hardware setups, such
as multiple synchronized Kinects [Kitsikidis et al. 2014]. The only requirement is that the skeletal
structure of the performer can be recovered from the motion-capture data, so that the underlying
motion can be cast into the LMA feature space for further processing. A limitation of the proposed
methodology is that a subset of the features required use of a short time window, resulting in delays in
the extraction of the performance characteristics.

We aim to extend the proposed dance teaching simulator to work with the Dance Motion Capture
database; in that manner, it will constantly be enriched with new clips and data as soon as they are
available. Future work will see the introduction of a large variety of different dances and performances
to establish a more complete motion-capture dance library.

In addition, for a real-time dance evaluation system, better motion synchronization and segmen-
tation techniques need to be developed to take into consideration the experience of the user; for in-
stance, different synchronization and evaluation approaches should be considered for amateur or ex-
pert dancers since the former needs more time to see and perform, while the latter can do so almost
immediately.

The next step is to design enhanced learning tools and processes for teaching and learning dance
through understanding and observing one’s own movement. The outcome will be a virtual teacher
that demonstrates dance through a whole-body interaction environment, giving feedback of the per-
formance to both the trainer and trainee. This learning simulator will aim to help students develop
critical skills on movement and enhance their movement literacy (ability to understand and describe
their motion).

Finally, while we have focused on introducing qualitative dance comparison methods using LMA,
the dance teaching system will have to be formally evaluated with human participants to establish its
effectiveness.

REFERENCES

Dimitrios S. Alexiadis and Petros Daras. 2014. Quaternionic signal processing techniques for automatic evaluation of dance
performances from MoCap data. IEEE Transactions on Multimedia 99, 1–16.

Andreas Aristidou and Yiorgos Chrysanthou. 2013. Motion indexing of different emotional states using LMA components. In
SIGGRAPH Asia 2013 Technical Briefs (SA’13). ACM, New York, NY, 21:1–21:4.

Andreas Aristidou and Yiorgos Chrysanthou. 2014. Feature extraction for human motion indexing of acted dance performances.
In Proceedings of the 9th International Conference on Computer Graphics Theory and Applications (GRAPP’14). 277–287.

Andreas Aristidou, Efstathios Stavrakis, and Yiorgos Chrysanthou. 2014. LMA-based motion retrieval for folk dance cultural
heritage. In Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection. LNCS, Vol. 8740.
Springer International Publishing, Cham, Switzerland, 207–216.

J. C. P. Chan, H. Leung, J. K. T. Tang, and T. Komura. 2011. A virtual reality dance training system using motion capture
technology. IEEE Transactions on Learning Technologies 4, 2, 187–195.

Min-Wen Chao, Chao-Hung Lin, J. Assa, and Tong-Yee Lee. 2012. Human motion retrieval from hand-drawn sketch. IEEE
Transactions on Visualization and Computer Graphics 18, 5, 729–740.

J. Chen, W. Lin, K. Tsai, and S. Dai. 2011. Analysis and evaluation of human movement based on Laban movement analysis.
Tamkang Journal of Science and Engineering 14, 3, 255–264.

Diane Chi, Monica Costa, Liwei Zhao, and Norman Badler. 2000. The EMOTE model for effort and shape. In Proceedings of
SIGGRAPH’00. ACM, New York, NY, 173–182.

Emily S. Cross, David J. M. Kraemer, Antonia F. de C. Hamilton, William M. Kelley, and Scott T. Grafton. 2009. Sensitivity of
the action observation network to physical and observational learning. Cerebral Cortex (New York, NY) 19, 2, 315–326.

Liqun Deng, Howard Leung, Naijie Gu, and Yang Yang. 2011. Real-time mocap dance recognition for an interactive dancing
game. Computer Animation and Virtual Worlds 22, 2–3, 229–237.

Zhigang Deng, Qin Gu, and Qing Li. 2009. Perceptually consistent example-based human motion retrieval. In Proceedings of
I3D’09. ACM, New York, NY, 191–198.

ACM Journal on Computing and Cultural Heritage, Vol. 8, No. 4, Article 20, Publication date: August 2015.



20:18 • A. Aristidou et al.

Björn Hartmann, Maurizio Mancini, and Catherine Pelachaud. 2006. Implementing expressive gesture synthesis for embodied
conversational agents. In Proceedings of GW’05. Springer, Berlin, 188–199.

Mubbasir Kapadia, I-kao Chiang, Tiju Thomas, Norman I. Badler, and Joseph T. Kider, Jr. 2013. Efficient motion retrieval in
large motion databases. In Proceedings of I3D’13. ACM, New York, NY, 19–28.

Gayle Kassing and Danielle Mary Jay. 2003. Dance Teaching Methods and Curriculum Design. Human Kinetics Publishers,
Champaign, IL.

Eamonn Keogh, Themistoklis Palpanas, Victor B. Zordan, Dimitrios Gunopulos, and Marc Cardle. 2004. Indexing large human-
motion databases. In Proceedings of VLDB. 780–791.

Alexandros Kitsikidis, Kosmas Dimitropoulos, Erdal Yilmaz, Stella Douka, and Nikos Grammalidis. 2014. Multi-sensor tech-
nology and fuzzy logic for dancer motion analysis and performance evaluation within a 3D virtual environment. In Design
and Development Methods for Universal Access in Human–Computer Interaction. LNCS, Vol. 8513. Springer International
Publishing, Cham, Switzerland, 379–390.

Lucas Kovar and Michael Gleicher. 2004. Automated extraction and parameterization of motions in large data sets. Transactions
on Graphics 23, 3, 559–568.
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