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ABSTRACT

Motion capture technology has enabled the acquisition of high qual-

ity human motions for animating digital characters with extremely

high �delity. However, despite all the advances in motion editing

and synthesis, it remains an open problem to modify pre-captured

motions that are highly expressive, such as contemporary dances,

for stylization and emotionalization. In this work, we present a

novel approach for stylizing such motions by using emotion coordi-

nates de�ned by the Russell’s Circumplex Model (RCM). We extract

and analyze a large set of body and motion features, based on the

Laban Movement Analysis (LMA), and choose the e�ective and

consistent features for characterizing emotions of motions. These

features provide a mechanism not only for deriving the emotion

coordinates of a newly input motion, but also for stylizing the mo-

tion to express a di�erent emotion without having to reference

the training data. Such decoupling of the training data and new

input motions eliminates the necessity of manual processing and

motion registration. We implement the two-way mapping between

the motion features and emotion coordinates through Radial Basis

Function (RBF) regression and interpolation, which can stylize free-

style highly dynamic dance movements at interactive rates. Our

results and user studies demonstrate the e�ectiveness of the styl-

ization framework with a variety of dance movements exhibiting a

diverse set of emotions.

CCS CONCEPTS

• Computing methodologies → Motion processing; Motion

capture; • Information systems → Sentiment analysis;
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1 INTRODUCTION

Motion capture has been widely adopted for animating 3D digital

characters due to the high quality of captured movements from

human subjects. Once captured, however, the raw data contains

neither semantics nor parameterization that may support further

editing and control of the animations. In particular, human move-

ments are characterized by style, which portrays, among others, its

unique identity re�ecting nuances of the character’s emotion. Alter-

ing the motion styles is important for realistic virtual characters in

computer games and animated �lms. The users, typically animators

and directors, need to e�ectively control the style and emotion

of a given animation, so as to better convey the story. Applying

such stylistic motion editing remains a challenging problem, how-

ever, currently requiring expensive, time-consuming, and tedious

manual interventions.

Previous studies on style transfer have mainly focused on lo-

comotion, using data-driven models. Typically styles are learned

and transferred from one animation clip to another that is carrying

out the same motion task [Brand and Hertzmann 2000; Hsu et al.

2005]. More recently, Yumer and Mitra [2016] introduced a method

based on spectral analysis that can be applied to di�erent actions.

However, motion registration is still required to align example clips

performing structurally similar motion tasks. Yet it is not obvious

as to how to perform such manual processing, including motion

segmentation and registration, for unstructured movements.

In this paper, we focus on complex and highly dynamic contem-

porary dance performances. Such dances are more challenging to

analyze than mundane tasks such as locomotion, as the perform-

ers can express their emotions through a rich motion repertoire.
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Figure 1: Our framework stylizes highly dynamic movements with emotion variations. The �rst row shows a captured con-

temporary dance performance. The second row shows a “happier” dance, while the bottom row feels “sadder”. In the happy

motion the arms are more elevated; while in the sad dance the arms and torso are more depressed and bent.

Modern dances rebel against traditional ones by rejecting rigid

rules and structures to favor freedom and expression of inner feel-

ings. Therefore such performances contain a large variety of free

style elements such as jumping, turning, and arm movements, and

can express a richer emotion vocabulary beyond the capability of

alternative performing arts. Therefore, motion segmentation and

registration is hard to achieve, due to this lack of rules and struc-

tures. Moreover, no two modern dancers perform the same as there

is no routine steps, elements or styles. Such motion irregularity and

variety pose serious challenges to existing style editing techniques.

Our framework starts with extracting relevant spatiotemporal

features from dance movements of known emotions, following

the Laban Movement Analysis (LMA) system [Laban and Ullmann

2011]. Then a small set of e�ective and consistent features for

emotion characterization are identi�ed. These features are then

used to map a new input motion to their emotion coordinates on

the Russell’s Circumplex Model (RCM) of a�ect [Russell 1980].

RCM is a widely-accepted model that distributes emotions in a

two-dimensional circular space, with arousal and valence as its

dimensions. The use of e�ective features and emotion coordinates

decouples the training data and the input motion. That is, the train-

ing and testing data do not need to relate to each other structurally

or semantically. Moreover, the training data themselves can be

heterogeneous. The di�culties on motion segmentation and regis-

tration for contemporary dance movements are thus circumvented.

Lastly, we map the required changes in emotion back to changes

in motion features, and solve for a motion that best satis�es the

desired features.

Our results demonstrate that our method is e�ective on emo-

tion control of irregular motions, as shown in Figure 1. The main

contributions of this work include:

(1) We are the �rst to analyze and control emotions for un-

structured motions with an intuitive interface based on

the RCM diagram, without the need for manual processing

and registration of the training and input data.

(2) We present a simple statistic method to identify performer-

independent consistent LMA motion features that are ef-

fective for emotion expression.

(3) We utilize RBF (Radial Basis Function) regression and in-

terpolation for two-way mapping between motion features

and RCM emotion coordinates. This enables stylizing mo-

tions with emotions in the full RCM space more than the

discrete set of captured emotions.

2 RELATEDWORK

Despite recent advances in motion analysis and parameterization

[Kovar and Gleicher 2004; Krüger et al. 2010; Müller et al. 2005],

developing methods for style editing and control remains chal-

lenging. Early representative methods used signal processing tech-

niques [Bruderlin and Williams 1995; Unuma et al. 1995] and mo-

tion warping [Witkin and Popovic 1995]. Later, linear methods,

such as multilinear models, were investigated to decompose mo-

tion data into action parameters and performer-dependent motion

signatures [Vasilescu 2002], or extract “style” and “identity” vari-

ations to support locomotion editing [Min et al. 2010]. Similarly,

Independent Component Analysis (ICA) was employed to separate

motion data into visually meaningful components related to motion

styles [Shapiro et al. 2006]. Physics-based methods such as [da Silva

et al. 2008; Liu et al. 2005; Yin et al. 2008] can also generate multiple

motion styles through tuning objective functions in optimization

and control parameters in simulation. These methods are usually
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hard to generalize to large-scale heterogeneous data and provide

no intuitive control over the synthesized styles.

With more and more motion capture data available, nonlin-

ear data-driven methods become the modern choice for generat-

ing stylistic variations of motions. Brand and Hertzmann [2000]

trained generative Hidden Markov Models from unsupervised train-

ing data for synthesizing stylistic variations. A statistical motion

model, called Linear Time Invariant (LTI) model, was proposed by

Hsu et al. [2005] to encode style di�erences and transfer new input

motion from one style to another. Gaussian Process models have

also been used to capture stylistic variations of human movement

for editing motions towards desired styles [Ikemoto et al. 2009;

Wang et al. 2007]. More recently, Xia et al. [2015] proposed local

mixtures of autoregressive models and an online algorithm to learn

correspondences between styles and motions and perform style

transfer. Most of these methods work only for motions performing

similar tasks, require some degree of data processing and motion

registration, and rely on subjective words from users for directing

style editing. In contrast, our method can be applied to independent

actions di�erent from the training data. Our emotion editing inter-

face based on the RCM diagram is more intuitive and principled to

use.

Our motion analysis is based on the Laban Movement Analy-

sis system [Laban and Ullmann 2011], which incorporates contri-

butions from anatomy, kinesiology and psychology to describe,

interpret and document human movements. The LMA principles

have been widely used for motion analysis and synthesis [Chi et al.

2000; Hartmann et al. 2005; Luo and Ne� 2012; Torresani et al. 2006;

Zhao and Badler 2005]. More recently LMA features have also been

used for motion retrieval and emotion classi�cation [Aristidou et al.

2015; Kapadia et al. 2013; Senecal et al. 2016]. In particular, Aristi-

dou et al. [2015] used a variety of LMA features to classify dance

movements into discrete emotion classes using Random Forests.

We extend this idea to regress motions to the continuous 2D space

of RCM, and then further support motion synthesis to generate

motions of user-desired emotions. One key component is to identify

from all LMA features a subset of features that are e�ective and

consistent in expressing emotions. These selected features serve as

the bridge between motions and emotions.

Most recently, Yumer and Mitra [2016] introduced a method to

transfer style between independent actions using spectral analysis.

A pair of source and target motions performing the same action

are chosen to extract their di�erence in the spectral domain, which

is then applied to a new input motion that can contain an unseen

action. In contrast, our method does not require selecting or register-

ing speci�c motions from the training set, and the desired emotions

can be speci�ed directly on the RCM diagram. Automatic regis-

tration techniques have been proposed before [Chen et al. 2009],

but mainly tested on locomotion. It would be quite challenging if

possible at all to register freeform dances, as it is not obvious even

to human users how the motion segments should align.

3 MOTION ANALYSIS

Analyzing motion characteristics that facilitate parameterized rather

than data-driven style control is challenging. Our motion analy-

sis algorithm encodes the stylistic characteristics of a training set
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Figure 2: TheRussell CircumplexModel (RCM) has two axes.

The arousal axis spans from mild to intense emotions, and

the valence axis spans from negative to positive emotions.

We circled the twelve chosen emotions that the dancerswere

asked to perform on the RCM diagram. The colormap, or

RCMF (RCM Function), shows the RBF interpolation for a

speci�c feature. In this particular example, the chosen fea-

ture has the lowest value at the “Sad” motion, and the high-

est value at the “Happy” motion.

of dancing motions into higher-level features, which help decou-

ple emotion control from the speci�c training motions that these

features were learned from.

3.1 Data Collection and Feature Extraction

We learn high-level motion features based on the Laban Move-

ment Analysis (LMA) principles, drawing from the framework

described in [Aristidou et al. 2015]. Our dataset consists of 108

di�erent contemporary dance performances captured at 480Hz and

then downsampled to 30Hz, each lasting approximately twenty

seconds. Nine dancers were instructed to perform twelve dances

in di�erent emotional styles. The chosen emotions widely span

the arousal and valence axes of the Russell’s Circumplex Model

of a�ect, as illustrated in Figure 2. We chose three emotions from

each quadrant of the RCM diagram for the dancers to perform. Six

dancers were asked to express emotions by following the same

overall motion trajectory, while the remaining three dancers could

act out their emotions completely freely. All captured dance mo-

tions are therefore labeled according to the designated emotion the

performers were asked to express. We further retarget all motions

to a single 3D skeleton with standard human proportions and body

structure [Aristidou et al. 2015].
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Figure 3: Visualization of the mean of the selected e�ective and consistent features for all the dancers and emotions, for one

selected postural cluster. Each cell shows the mean feature value of a single motion. The last row is the standard deviation of

the features across all dancers. The last column is the standard deviation of the features across all emotions.

We extract 37 basic spatio-temporal features f = { f i }, i =
1, · · · , 37 of human movements, which correspond to four Laban

Movement Analysis components (Body, Effort, Shape, Space).

We further compute the minimum, maximum, mean and standard

deviation of these features and derive 121 features
˜f = { ˜f i }, i =

1, · · · , 121 as shown in Table 1. Note that these derived features

˜f i are normalized into the range [0, 1], and averaged over a 35-

frame sliding window to reduce noise. Hereafter we tend to omit

the superscript of the feature values where possible for notation

simpli�cation.

3.2 E�ective and Consistent Features

We wish to identify the emotion of a motion by analyzing the

derived features
˜f , but not all of them correlate with emotions.

The subset of features that have distinct values for motions in

di�erent emotions is considered e�ective features that can help

discern emotions parameterized by the RCM. Among the e�ective

features, we also need to identify consistent features shared by

multiple performers to express the same feelings. Hereafter we

denote such e�ective and consistent features as selected features
ˆf .

More speci�cally, we denote the mean value of a selected feature

˜f of a motion m as
¯f , and indicate its dancer p and expressed

emotion e in parenthesis as
¯f (p, e). To evaluate the e�ectiveness of

˜f , we examine the standard deviation of
¯f (∗,p) across emotions for

a speci�c p. If std( ¯f (∗,p)) ≥ 0.21, i.e., the variation of this feature

across emotions is su�ciently large, then the feature is considered

e�ective, but only for this particular performer p. If a feature is

e�ective for the majority of the performers, e.g., seven out of nine

performers, it is then counted as an overall e�ective feature.

To evaluate the consistency of
˜f , we examine the standard de-

viation of
¯f (e, ∗) across performers for a speci�c emotion e . If

std( ¯f (e, ∗)) ≤ 0.2, i.e., the variation of this feature across perform-

ers is su�ciently small, then the feature is considered consistent,
but only for this particular emotion e . If a feature is consistent for

the majority of the emotions, e.g., ten out of twelve emotions, it is

then counted as an overall consistent feature.

From all the derived features
˜f , we identi�ed 31 e�ective and

consistent features as described above and denote them as selected

features
ˆf = { ˆf i }, i = 1, · · · , 31 hereafter. These features are high-

lighted in orange in Table 1. We further visualize these features in

Figure 3. The last column of Figure 3 shows the standard deviation

of features across emotions, and high values indicate the e�ective-

ness; while the last row shows the standard deviation of features

across performers, and low values indicate the consistency. Figure 4

further shows the RCM diagram of each performer for one selected

feature.
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 Basic LMA Features  𝑓𝑖 Derived Features 𝑓𝑖 

  Description 𝒎𝒂𝒙 𝒎𝒊𝒏 𝒔𝒕𝒅 𝒎𝒆𝒂𝒏 

B
O

D
Y

 

𝑓1 Left foot-hip distance 𝑓1 𝑓2 𝑓3 𝑓4 
𝑓2 Right foot-hip distance 𝑓5 𝑓6 𝑓7 𝑓8 
𝑓3 Left hand-shoulder distance 𝑓9 𝑓10 𝑓11 𝑓12 
𝑓4 Right hand-shoulder distance 𝑓13 𝑓14 𝑓15 𝑓16 
𝑓5 Hands distance 𝑓17 𝑓18 𝑓19 𝑓20; 𝑓1 
𝑓6 Left hand-head distance 𝑓21 𝑓22 𝑓23 𝑓24 
𝑓7 Right hand-head distance 𝑓25 𝑓26 𝑓27 𝑓28 
𝑓8 Left hand-hip distance 𝑓29 𝑓30 𝑓31 𝑓32; 𝑓2 
𝑓9 Right hand-hip distance 𝑓33 𝑓34 𝑓35 𝑓36; 𝑓3 
𝑓10 Hip-ground distance 𝑓37 𝑓38 𝑓39 𝑓40; 𝑓4 
𝑓11 Hip-ground minus feet-hip 𝑓41 𝑓42 𝑓43 𝑓44 
𝑓12 Feet distance 𝑓45 𝑓46 𝑓47 𝑓48; 𝑓5 
𝑓13 Left hand and chest 𝑓113 𝑓114 𝑓115 𝑓116; 𝑓30 
𝑓14 Right hand and chest 𝑓117 𝑓118 𝑓119 𝑓120; 𝑓31 

E
F

F
O

R
T

 

𝑓15 Deceleration peaks    𝑓49; 𝑓6 

𝑓16 Pelvis velocity 𝑓50  𝑓51 𝑓52; 𝑓7 

𝑓17 Left hand velocity 𝑓53  𝑓54 𝑓55; 𝑓8 

𝑓18 Right hand velocity 𝑓56  𝑓57 𝑓58; 𝑓9 

𝑓19 Left foot velocity 𝑓59  𝑓60 𝑓61; 𝑓10 

𝑓20 Right foot velocity 𝑓61  𝑓61 𝑓64; 𝑓11 

𝑓21 Pelvis acceleration 𝑓65; 𝑓12  𝑓66  

𝑓22 Left hand acceleration 𝑓67; 𝑓13  𝑓68  

𝑓23 Right hand acceleration 𝑓69; 𝑓14  𝑓70  

𝑓24 Left foot acceleration 𝑓71; 𝑓15  𝑓72  

𝑓25 Right foot acceleration 𝑓73; 𝑓16  𝑓74  

𝑓26 Jerk 𝑓75; 𝑓17  𝑓76  

S
H

A
P

E
 

𝑓27 Volume (5 joints) 𝑓77 𝑓78 𝑓79 𝑓80; 𝑓18 
𝑓28 Volume (All joints) 𝑓81 𝑓82 𝑓83 𝑓84; 𝑓19 
𝑓29 Torso height 𝑓85 𝑓86 𝑓87 𝑓88; 𝑓20 
𝑓30 Hands level    𝑓89-𝑓91; 𝑓21-𝑓23 

𝑓31 Volume (upper body) 𝑓97 𝑓98 𝑓99 𝑓100; 𝑓26 
𝑓32 Volume (lower body) 𝑓101 𝑓102 𝑓103 𝑓104; 𝑓27 
𝑓33 Volume (right side) 𝑓105 𝑓106 𝑓107 𝑓108; 𝑓28 
𝑓34 Volume (left side) 𝑓109 𝑓110 𝑓111 𝑓112; 𝑓29 

S
P

A
C

E
 𝑓35 Total distance    𝑓92; 𝑓24 

𝑓36 Area per second 𝑓93 𝑓94 𝑓95 𝑓96; 𝑓25 
𝑓37 Total volume    𝑓121 

 

Table 1: The 37 basic LMA features f i grouped by LMA com-

ponent (Body, Effort, Shape, Space), the 121 derived fea-

tures
˜f i , and the 31 selected features

ˆf i which are e�ective
and consistent. Note that each postural cluster only uses a

subset of these selected features.

3.3 Mapping Motion to Emotion

In order to analyze the emotion of a new input motion, we need

to parameterize the motion with the RCM emotion coordinates

e = (ex , ey ), through the selected feature vector
ˆf . We use Gauss-

ian Radial Basis Function (RBF) regression analysis to model the

correlation between motion features and emotion coordinates [Ras-

mussen and Williams 2005]. More speci�cally, to estimate ex of a

new motion with feature
ˆf :

ex = w0 +

31∑
i=1

wi ˆf i +
12∑
k=1

λkϕ(| |
ˆf − ˆfk | |), (1)

and

ϕ(r ) = exp(−
r2

2σ 2
), (2)

where σ is the average distance between the selected features of the

captured motions. The weights w0,wi , λk are obtained by �tting

Equation 1 to the features of the captured emotions
ˆfk . Also note

that we have multiple dancers performing the same emotion,
ˆfk is

actually the mean value across all performers for a speci�c emotion

Performer 1

Performer 9Performer 8Performer 7

Performer 6Performer 5Performer 4

Performer 3Performer 2

Average

excited

sad

Figure 4: Visualization of the RCM Functions of a selected

feature: the velocity of the left hand. High values are

markedwith red and lowvalueswith blue. It can be observed

that the feature has a consistent gradient across all nine per-

formers shown on the left. The average RCMF of all per-

formers is shown on the right. In this example, the velocity

of the left hand has a high mean value when the emotion is

“excited” and a low mean value when the emotion is “sad”.

ek . We can perform a similar regression on ey as well. We choose

to use regression rather than classi�cation, as we wish to support

emotions varing continuously over the RCM space. Our problem is

di�erent from traditional emotion recognition problems. In motion

editing for emotion control, a motion can have a mixture of charac-

teristics of multiple emotions, and motions change continuously so

do the emotions expressed by the motions.

We use leave-one-out cross validation to test the accuracy of

the regression. We use 96 out of the 108 captured motions, or the

performance of eight out of the nine dancers, as the training set,

and the remaining twelve motions as the testing set. We rotate the

dancers to repeat such regression nine times, each using a di�erent

performer as the testing set. We further employ Principal Compo-

nent Analysis (PCA) to reduce the dimensionality of the selected

features from 31 to 20, which covers 95% of the feature variance.

The accuracy of the regression, as measured by the distance to the

desired RCM coordinates, is improved by 15% after PCA. The results

are shown in Figure 5. As we can see, the emotion coordinates do

not really align with each other or the original position from the

RCM model marked by the blue dots. This implies the complexity

of emotions. However, all the predicted emotion coordinates do

fall into the correct quadrant of the RCM diagram. Note that the

emotion coordinates predicted for a new motion are clamped to be

within the RCM diagram, as necessary for one of the bored motions

in Figure 5.

3.4 Mapping Emotion to Motion

To edit and control the emotion expressed in a given motion, we

need to map changes in emotion coordinates back to the space of

motion features. Again, we use RBFs to estimate the feature value

ˆf i at an arbitrary emotional coordinate e on the RCM diagram:

ˆf i = w0 +w1ex +w2ey +
12∑
k=1

λkϕ(| |e − ek | |). (3)
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Figure 5: Leave-one-out cross validation of theGaussianRBF

regression. Predictions of “Afraid” are in red, “Bored” inma-

genta, “Relaxed” in green, and “Pleased” in yellow. Each of

the nine predictions per emotion is obtained by a di�er-

ent regression analysis, with motions from one dancer as

the testing data and the motions from the remaining eight

dancers as the training set. The positions of the blue dots are

determined by the original RCMmodel [Russell 1980]

We use multiquadrics radial basis functions:

ϕ(r ) =

√
1 +

r2

σ 2
, (4)

where σ is the average distance between the emotion coordinates of

the captured motions. Again, the weights w0,w1,w2, λk are �tted

to the captured motions.

Figure 2 visualizes one feature value interpolated from the cap-

tured RBF centers ek over the RCM diagram, and we will refer to

these continuous spaces RCM Functions (RCMFs). RCMFs enable

users to go beyond the twelve chosen discrete emotions and specify

a desired emotion anywhere inbetween on the RCM diagram.

3.5 Cluster Based Feature Analysis

Contemporary dances are free-form motions that contain extreme

postures. These postures can produce salient features that may or

may not be valid for other postures. For example, some performers

crouch the whole body down to the �oor to express the sad emotion.

Lowering the height of the root can thus be picked up as an e�ective

feature to express sadness by the feature analysis step described in

Section 3.2. However, applying this feature blindly to other poses,

such as walking stances, can result in walking with bent knees,

which is strenuous and tiring and not desirable by a sad performer.

Therefore it is necessary to identify and apply salient features only

for poses that are relatively nearby. We thus cluster all the training

poses and then perform local feature analysis within each cluster

to alleviate such faulty generalization of motion features.

We cluster all the captured poses using hierarchical cluster-

ing [Manning et al. 2008]. Our character model has one root joint

and 20 internal joints. To measure the similarity between poses,

we �rst discard the planar position and facing direction of the root

joint, so that each pose is parameterized by the height of the root

Feature Modification Rules Affected Features 

𝑔𝑔1(𝑐𝑐1): modifies the position of the pelvis 𝑝𝑝𝑟𝑟: 
if 𝑐𝑐1 > 1.0 
 if �𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  �   >�𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑇𝑇−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  � 
  𝑝𝑝𝑟𝑟+=  (𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑇𝑇  ) ×  𝑐𝑐1 
 else 
  𝑝𝑝𝑟𝑟 += (𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑇𝑇 − 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)(1.0 − 1.0/𝑐𝑐1) 
else 
 𝑝𝑝𝑟𝑟+=  𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × (𝑐𝑐1 −1.0) 

where 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝′  is the vector from the pelvis to the ground,  
and 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑇𝑇 is the same vector in the T-pose. 

𝑓𝑓4, 𝑓𝑓18, 𝑓𝑓19, 𝑓𝑓27, 𝑓𝑓28, 
𝑓𝑓29. 

𝑔𝑔2(𝑐𝑐2): modifies the position of the head 𝑝𝑝ℎ: 

  𝑝𝑝ℎ+= 𝑑𝑑𝑡𝑡𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝,𝑇𝑇 − ��𝑑𝑑𝑡𝑡𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝,𝑇𝑇 − 𝑑𝑑𝑡𝑡𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝�/𝑐𝑐2� − 𝑑𝑑𝑡𝑡𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝 

where 𝑑𝑑𝑡𝑡𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝 is the vector from the head to the pelvis,  
and 𝑑𝑑𝑡𝑡𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝,𝑇𝑇 is the same vector in the T-pose. 

 𝑓𝑓18,𝑓𝑓19, 𝑓𝑓20, 𝑓𝑓26, 𝑓𝑓28, 
 𝑓𝑓29.  

𝑔𝑔3(𝑐𝑐𝐿𝐿/𝑅𝑅
ℎ𝑝𝑝𝑒𝑒𝑒𝑒 , 𝑐𝑐𝐿𝐿/𝑅𝑅

𝑐𝑐ℎ𝑝𝑝𝑝𝑝𝑡𝑡 , 𝑐𝑐𝐿𝐿/𝑅𝑅
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑐𝑐𝐿𝐿/𝑅𝑅

𝑔𝑔𝑟𝑟𝑝𝑝𝑔𝑔𝑔𝑔𝑒𝑒): modifies the position 𝑝𝑝𝐿𝐿/𝑅𝑅 of the left (L) 
and right (R) hand respectively: 

𝑝𝑝𝐿𝐿/𝑅𝑅 +=  [𝑑𝑑𝐿𝐿/𝑅𝑅
ℎ𝑝𝑝𝑒𝑒𝑒𝑒 × (𝑐𝑐𝐿𝐿/𝑅𝑅

ℎ𝑝𝑝𝑒𝑒𝑒𝑒 − 1.0) + 𝑑𝑑𝐿𝐿/𝑅𝑅
𝑐𝑐ℎ𝑝𝑝𝑝𝑝𝑡𝑡 × (𝑐𝑐𝐿𝐿/𝑅𝑅

𝑐𝑐ℎ𝑝𝑝𝑝𝑝𝑡𝑡 − 1.0) + 
𝑑𝑑𝐿𝐿/𝑅𝑅
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × (𝑐𝑐𝐿𝐿/𝑅𝑅

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1.0) + 𝑑𝑑𝐿𝐿/𝑅𝑅
𝑔𝑔𝑟𝑟𝑝𝑝𝑔𝑔𝑔𝑔𝑒𝑒 × (𝑐𝑐𝐿𝐿/𝑅𝑅

𝑔𝑔𝑟𝑟𝑝𝑝𝑔𝑔𝑔𝑔𝑒𝑒 − 1.0)]/4 

where 𝑑𝑑𝐿𝐿/𝑅𝑅
𝑗𝑗𝑝𝑝𝑝𝑝𝑔𝑔𝑡𝑡  is the vector from each hand to the referred joint (head, chest, 

pelvis, ground). 

𝑓𝑓1, 𝑓𝑓2,𝑓𝑓3, 𝑓𝑓18, 𝑓𝑓19, 𝑓𝑓21, 
𝑓𝑓22, 𝑓𝑓23, 𝑓𝑓26, 𝑓𝑓28,𝑓𝑓29, 
𝑓𝑓30, 𝑓𝑓31. 

𝑔𝑔4(𝑐𝑐4): modifies the frame rate ν: 

ν ×= 𝑐𝑐4 

𝑓𝑓6, 𝑓𝑓7, 𝑓𝑓8, 𝑓𝑓9, 𝑓𝑓10, 𝑓𝑓11, 
𝑓𝑓12, 𝑓𝑓13, 𝑓𝑓14,𝑓𝑓15, 𝑓𝑓16, 
𝑓𝑓17, 𝑓𝑓24, 𝑓𝑓25. 

 
Table 2: Heuristic rules used to modify features for motion

synthesis. Each rule is parameterized by one or more coe�-

cients c∗ and a�ects multiple features.

and 21 quaternions p = {h,qj }. We then compute the di�erence

between pose pu and pv as follows [Lee et al. 2002]:

d(pu ,pv ) = (hu − hv ) +
∑
j
w j | | log(q−1

uj qvj )| |
2

(5)

We observe that the lower-body joints are mainly responsible

for balance and locomotion, and emotions are mainly expressed

through upper-body movements. Hence we assign higher weights

to the root and arm joints in comparing poses. We experimented

with di�erent numbers of clusters, and found that using �ve clus-

ters represents a good trade-o� between algorithm e�ectiveness

and algorithm complexity. These clusters roughly classify all the

poses into one crouching cluster of low stance, mid-air poses due to

jumping, and three standing clusters with di�erent arm postures.

We identify e�ective and consistent features as described in

Section 3.2 locally in each of the �ve clusters. For each cluster, we

calculate the varying spatiotemporal features of the performances

for each dancer and each emotion to generate a cluster-dependent

emotion-content table. All the �ve local emotion-content tables can

be found in the supplementary materials.

4 MOTION SYNTHESIS

Given an input motion m, we �rst analyze its emotion e from its

motion features as described in Section 3.3. We then visualize e
on the RCM diagram and then the user is free to indicate a new

desired emotion e∗ to transform the input motion to. Our motion

synthesis algorithm to be described then outputs a new motion

m∗. The user can perform the editing multiple times until m∗ is

satisfactory. Note that we apply motion synthesis only on sampled

keyframes, i.e., every �fth frame uniformly drawn from the motion.

We then interpolate the edited keyframes to obtain the full motion
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Figure 6: Modi�cation of an input motion towards a sadder

(top blue) and happier (bottom red) emotion. Motions are

synchronized in time for ease of comparison. The sad char-

acter draws its limbs and torso closer to the body; while the

happy character extends and stretches more.

trajectory. Therefore what follows is the description of the keyframe

synthesis.

We �rst map the desired emotion e∗ to desired motion features

ˆf ∗ as described in Section 3.4. As the features
ˆf ∗i are not guaranteed

to be independent of or even consistent with each other, e.g., the

desired hand-hand distance may be con�icting with the desired

hand-hip distance, we �rst optimize for poses that satisfy the desired

features as best as possible. To this end, we designed four heuristic

rules as shown in Table 2 to modify the positions of four control

joints: head, hands, and pelvis. For example, rule д1(c1)modi�es the

position of the pelvis joint, which a�ects the hip-ground distance

ˆf 4
, as well as volumes

ˆf 17, ˆf 18, ˆf 27, ˆf 28, ˆf 29
. We search for c1, the

coe�cient for rule д1, that minimizes the distance between the

current feature values and the desired feature values for all the

keyframes indexed by time t in a least-squares sense:

min

c1

∑
t
| | ˆf ∗t −

ˆft (c1t )| |
2

(6)

We use the interior-re�ective Newton method [Coleman and Li.

1996] for this keyframe optimization and we initialize all coe�cients

to 1.0.

We then sequentially apply the rest of the rules д2,д3,д4 to op-

timize for the coe�cients of these rules to minimize the distance

between the current feature and the desired feature. From these

optimized coe�cients we then compute the desired positions for all

the control joints. We then pass these joint positions to an Inverse

Kinematics solver, (FBBIK) [Root-Motion 2016], to solve for the

fullbody poses. FBBIK automatically respects skeletal constraints

and guarantees the naturalness of the reconstructed fullbody poses.

This is important as the desired control joint positions from the

optimizations above may violate physical constraints, such as re-

quiring variable bone length or out of range motions. FBBIK also

supports synergies between nearby joints on the same kinematic

chain, by providing manually tunable pull weights.

5 RESULTS

We have implemented our emotion control framework using MAT-

LAB R2014b. We report the performance on an eight-core PC with

Figure 7: Six characters dancing with di�erent emotions.

The emotion coordinates are visualized in the lower-left in-

set with corresponding colors. The brown character shows

the original motion. The two characters in themiddle dance

more happily (red) or more sadly (green). The three dances

at the back are edited towards afraid (yellow), tired (blue),

and pleased (purple), respectively.

Intel i7-2700K 3.5GHz CPU and 8GB RAM. Motion Analysis is per-

formed o�ine, and takes around 45 minutes with our 108 dances.

The motion synthesis is interactive but not realtime, and takes 12

seconds for an input motion of 680 frames. We have generated a

variety of stylized dances by shifting the expressed emotions of new

input motions using our framework. We encourage the readers to

check the accompanying video for side-by-side comparisons of the

input motions and the edited motions. Additional example results

are also provided in the supplementary material.

Emotions are controlled by simply specifying the target emotion

coordinates on the 2D RCM diagram for various input motions.

We focus on generating natural motion variations [Lau et al. 2009]

rather than completely reversing extreme emotions. In Figure 1

one motion is modi�ed to express a happier and a sadder feeling.

Figure 6 overlays the original motions in brown with the stylized

motions in a di�erent color, which are temporally synchronized for

ease of comparison. The happier character elevates its limbs and

torso more in comparison to the input motion; while the sadder

character lowers its limbs and bends the torso more. In addition, the

happy character moves faster and the sad character slows down,

which can be best observed in the video. In Figure 7, we show

an example frame of a group dance where each dancer performs

in di�erent emotion. The brown character performs the original

dance, while each of the remaining �ve characters are stylized with

a di�erent target emotion, including happy, sad, afraid, tired, and

pleased.

We have also tested our method on stylizing non-dance motions,

such as locomotion including walking and running obtained from

the CMU motion capture database. Our stylizer can be applied

without any additional data-dependent processes. However, the

mapping of such motion onto the RCM diagram is less accurate due

to the di�erent nature of the training and testing data. Nevertheless,

experiments show that our framework can still generate reason-

able emotional variants of the input motion. Figure 8 illustrates an
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Figure 8: Stylization on walking. The input motion is visual-

ized on the brown character, whereas the modi�ed motion

towards angry and bored is shown on the yellow and green

characters, respectively.

example of modifying a walking sequence, where the brown char-

acter shows the input motion, and the yellow and green character

perform a stylized angry and bored walking, respectively. Including

generic motions into the training dataset may further improve the

synthesized motion quality.

We validate our motion editing results by calculating the emo-

tion coordinates of the modi�ed dances back onto the RCM diagram

again. We found that the new emotion coordinates are close to the

desired ones even though they do not align exactly. This indicates

that our method is e�ective in achieving desired emotionaliza-

tion. Furthermore, we conducted three user studies to be described

shortly to perceptually evaluate the e�ectiveness of our results.

In each user study, the target emotion coordinates for the edited

motions were on average 23% of the RCM diameter away from their

original coordinates. Also participants with incomplete responses

were discarded and were not counted in the evaluation. For more

detailed information such as the questionnaires used in our user

studies, please refer to our supplementary materials.

5.1 Naturalness

In the �rst user study, we investigate the naturalness of the edited

motion with respect to the original motion capture data. 65 partic-

ipants (28 males and 37 females, including 7 dance experts) were

presented with six pairs of dance motions rendered on the 3D

wooden mannequin character. The motion pairs all consist of one

captured motion, and one edited motion by our algorithm. The two

motions were placed side by side with a random left-right position.

The participants were asked to point out the original unaltered

motion for each pair, or “Do not know” if they cannot decide. The

users picked the true raw motion for 48% of the motion pairs; they

picked the stylized motion for 41% of the pairs; and for 11% of the

pairs they could not decide. A paired t-test on the probabilities of

picking the raw and the edited motion for the six pairs of motions

returned t = 1.8712 and p = 0.1202, and no statistically signi�cant

di�erence was found. We thus conclude that the edited motion

cannot be easily distinguished from raw motion capture data.

  
More Pleasant Nothing Changed Less Pleasant 

More Pleasant 75.8% 19.3% 4.9% 

Less Pleasant 5.8% 15.3% 78.9% 

 
More Intense Nothing Changed Less Intense 

More Intense 78.4% 18.3% 3.2% 

Less Intense 5.0% 14.4% 80.5% 

 

 User Response 

Ground Truth 

 User Response 

Ground Truth 

Table 3: Emotion control along theRCMaxes.More than 75%

of the responses are correct along the valence axis, andmore

than 78% correct along the arousal axis.

5.2 E�ectiveness

In the second user study, we investigate the e�ectiveness of our

emotion control framework along the RCM axes. 108 participants

(40 males and 68 females, including 15 dance experts) were provided

with a short description of the RCM diagram. Then they were shown

eight motion pairs rendered on the same 3D wooden mannequin.

The motion pairs all consist of one captured motion, and one edited

motion. Participants were asked to answer how they think the

edited motion di�ers from the original. Two sets of answers were

provided, the �rst was about the valence of the motion and the

options given were: “more pleasant”, “nothing changed” and “less

pleasant”, and the second set of options was about the intensity of

the motion and the options given were: “more intense”, “nothing

changed” and “less intense”. Table 3 summarizes the responses

of the participants. More than 75% of the emotion editing were

correctly identi�ed along the RCM valence axis, and more than

78% along the RCM arousal axis. This indicates that our emotion

control along the RCM axes are e�ective as well as the intended

direction of changes.

5.3 Recognition

In the third user study, we investigate the emotion recognition

performance in the full RCM space. The same set of participants as

in the E�ectiveness User Study described above were used. A set of

12 motions were chosen to broadly distribute across all four RCM

quadrants: RCM-Q1,RCM-Q2,RCM-Q3,RCM-Q4. Six motions were

the captured motions and the remaining six were our edited motions.

All participant were shown these same 12 motions and asked to

assign an emotion for each of them. They were given �ve choices:

one emotion from each RCM quadrant, and a �fth choice “none”

in case they cannot decide. The ability to recognize the respective

quadrant (RCM-Qi ) of the expressed emotion is reported in Table 4.

The results show that the success rates of emotion recognition

from raw motions and our edited motions are roughly the same.

More speci�cally, the participants were able to identify the correct

emotion from real mocap motions with an average accuracy of 68%,

and 67% from our stylized motions.

6 CONCLUSIONS AND FUTUREWORK

We have presented an emotion control framework for unstructured

dances. We have shown how to map freeform motion sequences
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RCM-Q1 RCM-Q2 RCM-Q3 RCM-Q4 None 

RCM-Q1 60.6% 18.3% 10.1% 6.4% 4.6% 

RCM-Q2 4.0% 74.0% 11.0% 6.7% 4.3% 

RCM-Q3 1.8% 0.9% 68.8% 28.4% 0.0% 

RCM-Q4 8.3% 0.0% 19.3% 68.8% 3.7% 

(a) Emotion Recognition of Capture Motions 

  
RCM-Q1 RCM-Q2 RCM-Q3 RCM-Q4 None 

RCM-Q1 57.8% 11.0% 5.5% 6.4% 19.3% 

RCM-Q2 6.9% 75.2% 3.7% 6.0% 8.3% 

RCM-Q3 3.7% 1.8% 67.0% 16.5% 11.0% 

RCM-Q4 12.8% 1.8% 14.7% 67.9% 2.8% 

(b) Emotion Recognition of Edited Motions 

 User Response 

Ground Truth 

 User Response 

Ground Truth 

Table 4: Emotion recognition in the full RCM space from

captured motions (a) and edited motions (b). RCM-Q1 corre-

sponds to the intense and unpleasant emotions; RCM-Q2 the

intense and pleasant; RCM-Q3 the mild and pleasant; and

RCM-Q4 the mild and unpleasant. Each row represents the

RCMquadrant that the emotion of the presentedmotion lies

in; and each column shows the percentage of user responses.

Participants had a similar performance in emotion recogni-

tion from captured motions and stylized motions.

to the 2D space of the Russell’s Circumplex Model of a�ect; and

how to synthesize altered motions with di�erent desired emotions,

usually interactively adjusted by users. This stylization framework

does not require any manual motion preprocessing such as segmen-

tation, labeling, or registration. Thus it can handle heterogenous

and unstructured motions as well as regular movements. Three

user studies veri�ed the quality of our results and the e�ectiveness

of the proposed framework.

We foresee this framework useful for content creators to generate

multiple variations of captured or authored motions [McDonnell

et al. 2008b]. The RCM interface is intuitive for both experts and

novice users. The performance is interactive and likely realtime

after code optimization. Training with application speci�c data or

generic motions will likely a�ect the synthesis quality to some

extent, and is worth exploring as a future direction.

The results of our motion analysis based on selected LMA fea-

tures correspond well to �ndings from previous works on how emo-

tions are typically expressed through body motions in dance [Nor-

moyle et al. 2013; Sawada et al. 2003; Shiratori et al. 2006]. For

example, higher arm motions convey a happier emotion, sad move-

ments tend to be slower with the head and spine more bent, a lot of

the emotion is conveyed through upper body motions. In the future,

we would like to explore mid-level pose features [Pons-Moll et al.

2014] to see if they are more e�ective. Our feature selection based

on variance is also simplistic, and could be improved by selecting

features that discriminate between emotions and improve emotion

prediction [McDonnell et al. 2008a; Sigal et al. 2010].

We have found that emotion recognition from free-form dances

is in general a harder problem than we thought. For example, the

accuracy of recognizing the RCM quadrant is only 68% for the cap-

tured motions, and is even lower if speci�c choices such as “excited”

or “delighted” are demanded. However, we deem it the subjective

nature of this problem: on one hand di�erent motions are performed

to express the same required emotions; on the other hand, emotions

are recognized with di�erent labels for the same motions. This is

also testi�ed by our regression results shown in Figure 5, where the

predicted emotion coordinates for the captured motions spread out

in each quadrant. Our observation also aligns well with �ndings

from previous studies [Förger and Takala 2015]: users tend to agree

more on the relative changes of emotions rather than their absolute

labels. We did notice that professional dancers and choreographer

usually perform slight better than non-expert users by 5-15% in

the latter two user studies, due to their increased sensitivity to

expressed emotions from their professional experiences.

We note that the quality of the stylized motions depends on

the quality of the input data. In this work, we used an 8-camera

motion capture system and 38 markers for each performer. Since

contemporary dances often contain complex and extreme move-

ments, such as turning around and crouching, marker occlusions

occurred frequently. Therefore the quality of our captured motions

were not great. In the future, we would like to use better motion

capture system and capture setups. We also plan to integrate motion

processing algorithms to remove data noise and better retargeting

algorithms to remove foot sliding problems before passing the data

to our motion stylizer.

Currently our motion synthesis method involves sequential op-

timizations on heuristic rules, and a third-party IK algorithm. In

the near future we would like to reformulate it as one single con-

strained nonlinear optimization problem to achieve optimal results.

We also wish to explore the latest advances in deep learning for

feature selection and the two-way mapping between motions and

emotions in the motion analysis part.
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