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INTRODUCTION

In recent years, computer vision has seen rapid 
advancement, particularly driven by deep learn-
ing techniques. A noticeable trend is the increasing 
depth and complexity of models, with a focus on 
achieving state-of-the-art performance [1, 2]. This 
trend can be attributed, in part, to the significance 
of the dynamic development of artificial intelli-
gence methods, where new deep neural networks 
undergo rigorous testing on a massive dataset com-
prising millions of images. However, it is worth 
noting that while accomplishing an excellent re-
sult is essential in laboratory environment, real-
world applications often differ significantly, due to 

variations in dataset sizes, integrity, completeness, 
and composition. Medical datasets containing im-
ages of rare diseases are crucial for advancing di-
agnostic accuracy, treatment strategies, and studies 
about atypical disorders [3]. They enable machine 
learning algorithms to recognize patterns and as-
sist healthcare professionals in identifying diseases 
that they might encounter infrequently, thereby 
improving patient outcomes. Moreover, these da-
tasets can help in developing studies on causes and 
progression of rare diseases, potentially leading to 
new approaches supporting therapeutic solutions. 
However, obtaining such data poses significant 
challenges. Rare diseases, by definition, affect a 
small number of individuals, which means that 
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assembling a comprehensive dataset is inherently 
difficult. Privacy concerns and ethical consider-
ations further complicate data collection, as patient 
consent and anonymity must be maintained. Addi-
tionally, there is often a lack of funding and incen-
tives for research on conditions that affect a limited 
patient population, leading to scarcity of resources 
to systematically collect and curate these valu-
able datasets. Collaboration across institutions and 
countries, along with strong ethical frameworks, 
are essential to overcome these barriers and build 
robust medical datasets for rare diseases. Achieve-
ments in the field of machine learning and comput-
er vision may also be helpful here, due to its pos-
sibility of expansion of existing medical data sets.

Motivation of study

For many years, medical imaging has had 
enormous potential in clinical diagnosis and pa-
tient assessment. Optical coherence tomography 
(OCT) images are often the basis for diagnosing 
eye diseases, including rare ones. The studies [3, 
4] presented selected methods of classification, de-
tection and analysis of images illustrating retinitis 
pigmentosa (RP) diseases. For this purpose, solu-
tions such as residual attention network, RP seg-
mentation network and simple convolutional net-
works were applied. However, many authors em-
phasize the huge lack of data they had to deal with 
while developing tools supporting diagnostics. 
Creating high-quality synthetic images is crucial 
for increasing the performance of machine learn-
ing models [5]. These data will also lead to better 
understanding of rare eye diseases.  Therefore, this 
study presents methods that allow for augmenta-
tion of image data using both typical methods and, 
above all, generative neural networks.

Contribution of the proposed work

This study’s significant contributions are con-
cisely summarized as follows:
1.	The adoption of a deep convolutional genera-

tive adversarial network (DCGAN) for data 
augmentation, which has improved the qual-
ity of the dataset.

2.	The incorporation of data obtained for con-
sistency using classic augmentation methods 
found in computer vision issues.

3.	The deployment of alteration of VGG16 ar-
chitecture that effectively integrates the aug-
mented DCGAN-generated dataset with the 

initial dataset, resulting in a notable increase 
in accuracy over past studies. Furthermore, the 
Xtreme gradient boost (XGBoost) algorithm is 
employed to refine feature representation.

The primary goal of the article is to examine 
the impact of small medical datasets augmentation 
on the quality of classification. The study placed 
particular emphasis on the detection of rare eye 
diseases, in particular retinitis pigmentosa.

The further structure of this paper is as fol-
lows: Section 2. describes current state of-the-art. 
Section 3. presents a detail methodology of the 
proposed approach in this study. Section 4. con-
tains experimental findings with in-depth analysis. 
Section 5. draws conclusions from the research 
findings as well as future direction of study.

RELATED WORKS

Generating synthetic images for improving 
detection performance

Various supervised machine learning (ML) ap-
proaches have been widely applied for retinal dis-
eases with great success [6, 7]. Automatic methods 
have achieved better performance in accordance to 
traditional ones, by automatically extracting the rel-
evant features [8]. However, in order to obtain high 
classification accuracy results a well-balanced data-
set for training should be gathered, which, in prac-
tice, is a great challenge.  Especially, this situation 
may occur for rare eye retinal disease recognition 
[9, 10]. These difficulties have been overcome by 
applying generative adversarial network (GAN) that 
may produce additional samples based on random 
noise [11]. These synthetic images are very similar 
to the original ones and thus the training set may be 
balanced. In supervised learning methods the GAN 
models are utilizing as a pre-processing step to en-
large the training dataset [10, 12]. In recent studies, 
various retinal diseases have been detected utilizing 
GAN models. For early recognition of glaucoma, 
diabetic retinopathy, cataract, macular edema, and 
myopia the modified generative adversarial-based 
crossover salp grasshopper (MGA-CSG) was pro-
posed for fundus images [13]. The GAN model was 
used for feature vector augmentation. This algo-
rithm resulted in high obtained classifier accuracy 
with a small sample of input data. Due to fact that 
classification is based on labelled samples while the 
GAN is unsupervised method, the semi-supervised 
feature discrimination and distribution was ap-
plied to create hybrid classifier system. As a result, 



323

Advances in Science and Technology Research Journal 2025, 19(2), 321–340

labelled and unlabelled data were predicted and 
classified achieving high accuracy of 98.7%. The 
GAN models were also utilized for increasing de-
tection of age-related macular degeneration (AMD). 
Ten various GAN architectures were compared for 
generating images with and without AMD, such as: 
deep convolutional GAN (DCGAN), least squares 
generative adversarial networks (LSGAN), was-
serstein GAN, wasserstein GAN with gradient 
penalty, deep regret analytic generative adversarial 
networks, energy-based generative adversarial net-
work, boundary equilibrium generative adversarial 
networks, conditional GAN (CGAN), and auxiliary 
classifier GAN [14]. The synthetic and real AMD 
and non-AMD images were assessed by experts and 
three deep learning methods: SqueezeNet, AlexNet 
and ResNet-18. The machine learning algorithms 
appeared to be as good as medical experts. Addi-
tionally, the web system was developed. 

The StyleGAN2-ADA model was applied for 
improving the classification performance of inher-
ited retinal diseases using fundus autofluorescence 
images in [15]. The synthetic images, generated 
utilizing GAN model, were evaluated by four clini-
cal experts indicating whether they were real, fake 
or it was difficult to decide. Additionally, ten vari-
ous deep learning models were trained with various 
proportion of synthetic and real images. The authors 
stated that classification performance obtained after 
training on synthetic data was comparable to per-
formance achieved using training on all real data. 
Improving AMD detection utilizing another GAN 
method for super-resolution (SR) of the OCT B-
scan images is described in [16]. The SRGAN pro-
posed architecture allowed for obtaining SR without 
combining images of low and high resolutions. The 
quality of the OCT B-scan images was improved. 
The classification accuracy for single scale CNN 
method achieved very high results up to 96.54%. 
The SRGAN was also applied for improving reso-
lution of fundus images that were further utilized for 
detecting lesions in retina [17]. Mask-RCNN with 
three variants, R-50, R-101, and X-101, was used. 
The average precision was the highest for X-101 
model, achieving up to 75.20% for exudates and 
67.20% for microaneurysms. A few-sample genera-
tor, created based on DCGAN and SRGAN, was in-
troduced in [18] for generating synthetic images for 
branch retinal arterial occlusion and central retinal 
arterial occlusion. The obtained data were further 
applied in DeepDrRVOtraining for detecting the 
ocular diseases. The proposed framework achieved 
accuracy, ranging from 86.30% to 100%.

Differentiating between real and artificially 
generated images

High resolution synthetic images (512×512 pix-
els), referable AMD as well as nonreferable AMD 
datasets were obtained using Progressively grown 
Generative Adversarial Networks (ProGAN) meth-
ods [19]. The generated images were distinguished 
by certified experts. Moreover, deep convolutional 
neural networks were applied that were trained on 
separate types of images, real and synthetic. The 
network learned using real images achieved higher 
ability to recognize referable AMD and nonrefer-
able AMD at the level of 91.12%.

The ability to distinguish synthetic fundus im-
ages, generated by the DCGAN, from the real ones 
were investigated in [20]. The obtained F-measure 
results reaching up to 95% proved that the great 
number of fake images could be recognized.  An-
other study concerning generating synthetic diabet-
ic retinopathy was presented in [21]. Two types of 
GAN models were used: the DCGAN and the LS-
GAN. As a result, the high-quality and high-resolu-
tion images were obtained. The created data were 
assessed for visual acuity (inception score). The 
Frechet inception distance was applied for measur-
ing GANs performance. The study indicated that 
the DCGAN is the most appropriate tool to gener-
ate diabetic retinopathy fundus images.

The counterfactual GAN model was also ap-
plied for generating high-quality OCT images 
based on real images and additional information, 
such as: age and sex [22]. The synthetic retinal ag-
ing images were visually assessed by five experts. 
Moreover, three ResNet50-based neural network 
approaches were utilized for sex and age classifi-
cation purposes. The tests were performed on real 
OCT images with success, achieving 79.5% ac-
curacy for sex and 65.8% for age predictions.

The deep convolutional GAN models were 
developed for generating retinal synthetic images 
(DCGAN) and for both generating images and 
semi-supervised learning (SS-DCGAN) [23].  Al-
though SS-DCGAN was stated to be insufficient as 
a synthesizer, it appeared to be a proper method as a 
classifier. The glaucoma assessment was performed 
using a small labelled dataset and a large unlabelled 
dataset. The ability to detect glaucoma from cropped 
fundus images using the SS-DCGAN achieved high 
results, up to 84.29% F1-score.

The hybrid deep learning method was applied 
to detect an early stage of glaucoma diseases using 
fundus images of patients suffering from diabetes 
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[24]. This approach allowed to recognize two types 
of retinal diseases in the same time. The GAN 
model was applied for enlarging the data by creat-
ing synthetic images. They were used for classifi-
cation training and for improving its performance. 
The proposed Mayfly optimized deep convolutional 
neural networks included the optimalization algo-
rithm for eluding the classifier overfitting. The pre-
sented approach achieved high accuracy, up to 99%. 
The detection of healthy retina, age-related macular 
degeneration, diabetic retinopathy as well as crys-
talline retinopathy using augmentation methods was 
described in [25]. The CutMix method was applied 
together with CycleGAN for datasets enlargement 
with high-quality synthetic images. In order to over-
come the issue of synthetic data distribution, the 
multistage GAN training was used. The ResNet50 
sensitivity achieved 95.5%. 

In diabetic retinopathy detection the African 
Buffalo Optimization was also applied with great 
success [26].  That approach involved the hybrid 
GAN and Bidirectional Gated Recurrent Unit 
(BiGRU). The GAN was used to generate syn-
thetic images but also for extract latent variables 
that were further represented as multifaceted vec-
tor spaces. The BiGRU was used for diabetic reti-
nopathy detection utilizing temporal relationships 
between extracted features. The proposed method 
achieved 98.5% accuracy.

The hybrid Region-based convolutional neu-
ral networks together with GAN (RCNN-GAN) 
was proposed to identify various stages of dia-
betic retinopathy [27]. The mild, moderate, se-
vere, and nonproliferative stages of the disease 
was detected. In that study the GAN was used 
for extracting features while the RCNN acted as 

a discriminator. The Archimedes optimization 
Algorithm was applied to optimize both GAN 
and RCNN parameters. The proposed solution 
achieved up to 99.4% accuracy.

Another GAN application is denoising im-
ages. This method for adaptive optics images has 
gained great success [28]. Thirty-two high-qual-
ity retinal images were blurred using Gaussian 
kernel convolutions and image motion blur. The 
proposed denoiseGAN include CGAN model that 
utilizes high-quality and synthetic low-quality 
images. While training process of the denoise-
GAN the denoised image is predicted from the 
synthetic one. Applying the minimalization of the 
diversities between denoised image and the origi-
nal one the denoiseGAN acquires the skills to 
remove added noise from images. This approach 
achieved 99.51% precision and 85.71% recall.

The GAN models seem to be promising tool 
for enlarging the datasets, especially for rare dis-
eases. They are suitable methods for enhancing 
image quality. They also have applications in im-
proving detection performance.

MATERIALS AND METHODS

This section provides an overview of the da-
taset, classical augmentation methods, DCGAN, 
XGBoost, and evaluation metrics and measures. 
This paper aims to enhance retinitis pigmentosa 
image outcomes by integrating DCGAN with 
transfer learning. For classification purposes the 
architecture of the VGG16 model was applied, 
while the entire proposed methodology is out-
lined in Figure  1.

Figure 1. Proposed methodology for DCGAN medical images augmentations and VGG16+XGBoost classification
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Datasets

RP is a group of retinal diseases suffering 
from the progressive dysfunction of rod and 
cone photoreceptors in the retina. Analysing the 
type of cell primarily affected, RP may be di-
vided into two categories: rod-dominant (classi-
cal RP) and conedominant cone–rod dystrophy 
(CORD) [3, 6]. This study employs ultra-wide-
field fundus photography (UWFP) and ultra-
widefield fundus autofluorescence (UWFAF) 
images gathered using an Optos 200TX de-
vice (Optos PLC). The created dataset contains 
healthy patients and patients suffering from 
cone–rod (CORD) and cone–rod dystrophies 
(RP). Only cases with clinical characterisation 
of the retinal dystrophy were selected. UWFP 
and UWFAF photography were performed after 
pupil dilation with topical 0.5% tropicamide.

The data were collected from 75 patients, in-
cluding 25 healthy people, at the chair and depart-
ment of General and Pediatric Ophthalmology of 
the Medical University of Lublin in Poland. To-
tally, 230 optomap retinal photography were gath-
ered. They were grouped into: 132 images with RP 
located at the periphery of the retina, 48 CORD 
images and 50 images representing healthy cases. 
Approval of the Ethic Committee of the Medi-
cal University of Lublin has been obtained (no. 
KE-0254/260/12/2022).

Deep convolutional generative adversarial 
network

A deep convolutional generative adversarial 
network is a class of artificial neural network that 
is used in unsupervised machine learning tasks. It is 
a variant of the generative adversarial network ar-
chitecture, which was introduced in [11]. DCGANs 
were first described in [29]. They are particularly 
designed to generate new content, like images, that 
mimic the distribution of real data. Generative ad-
versarial networks consist of two competing net-
works: a generator and a discriminator. The gen-
erator takes in a noise vector from Latent space and 
generates synthetic data. These fake samples, along 
with real ones, are inputted into the discriminator, 
which aims to distinguish between these two distri-
butions. Conversely, the generator aims to mimic 
the real distribution without directly observing it, 
making its outputs indistinguishable from genuine 
samples. Both networks are trained concurrently 
and adversarially until they reach a balanced state.
To address instability during training, the Wasser-
stein distance is employed. This choice is motivated 
by its ability to converge across a wider range of dis-
tributions and its direct correlation with the quality 
of the generated data [30]. The resulting formulation 
of this adversarial competition between generator 
(G) and discriminator (D) is presented in Eq. 1. The 
whole structure of DCGAN is presented in Figure 2.

Figure 2. The DCGAN workflow for retinitis pigmentosa data augmentation
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where 𝔼𝔼𝑥𝑥~ℙ𝑥𝑥, 𝔼𝔼𝑧𝑧~ℙ𝑧𝑧  
𝑁𝑁{𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖}(|𝑁𝑁| = 𝑛𝑛, 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑚𝑚, 𝑦𝑦𝑖𝑖 ∈ 𝑅𝑅).  

𝑦𝑦𝑖𝑖𝑖𝑖 = ∑ 𝑓𝑓𝑠𝑠(𝑥𝑥𝑖𝑖)
𝑆𝑆

𝑠𝑠=1
, 𝑓𝑓𝑠𝑠 ∈ ℱ (2) 

 
, ℱ = {𝑓𝑓(𝑥𝑥) = 𝜗𝜗𝑞𝑞(𝑥𝑥)}(𝑞𝑞: ℝ𝑚𝑚 → 𝑇𝑇, 𝜗𝜗 ∈ ℝ𝑇𝑇)  
 

𝒥𝒥 = ∑ 𝑙𝑙(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖) + ∑ 𝜙𝜙(𝑓𝑓𝑗𝑗)
𝑗𝑗𝑖𝑖

 (3) 

𝜙𝜙(𝑓𝑓) = 𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆‖𝜗𝜗‖2 (4) 

 

𝒥𝒥(𝑡𝑡) = ∑ 𝑙𝑙 (𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖
(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (5) 

 

𝒥𝒥(𝑡𝑡) ≃ ∑
𝑙𝑙(𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖

(𝑡𝑡−1)) + gift(𝑥𝑥𝑖𝑖) +

+ 12 ℎ𝑖𝑖𝑓𝑓𝑡𝑡
2(𝑥𝑥𝑖𝑖) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (6) 

  

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] + 𝜗𝜗(𝑓𝑓𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
 (7) 

 

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] +  𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆 ∑ 𝜔𝜔2

𝑗𝑗

𝑇𝑇

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
 (8) 

= ∑ [(∑ 𝑔𝑔𝑖𝑖
𝑖𝑖∈𝑆𝑆𝑗𝑗

) 𝜔𝜔𝑗𝑗 + 1
2 (∑ ℎ𝑖𝑖 +

𝑖𝑖∈𝑆𝑆𝑗𝑗

𝜆𝜆) 𝜔𝜔2
𝑗𝑗] +

𝑇𝑇

𝑗𝑗=1
𝛾𝛾𝛾𝛾  

 

𝜔𝜔∗
𝑗𝑗(𝑞𝑞) = −

∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆 (9) 

𝒥𝒥(𝑡𝑡)̃ (𝑞𝑞) = − 1
2 ∑

(∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗 )
2

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆

𝑇𝑇

𝑗𝑗=1
 (10) 

 

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (11) 

 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2

𝑛𝑛

𝑖𝑖=1
, (12) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √𝑀𝑀𝑀𝑀𝑀𝑀 (13) 

 

x~ℙx, is binary cross entropy of G and D, 
respectively, z indicates generated data, ℙx 
is a probability distribution of the real data 
x, while ℙz corresponds to the prior prob-
ability distribution of the noise vector z.

Generator

In a GAN the generator is one of the two 
neural networks that engage in a zero-sum game, 
where it competes against the discriminator. The 
role of the generator is to learn how to produce 
data that is indistinguishable from genuine data 
provided during the training phase. The generator 
network takes a random noise vector (latent space 
vector) as input and generates data. The goal of 
the generator is to produce data that is indistin-
guishable from real data [31, 32].  

The network’s generator is constructed with 
an 11-layer architecture, encompassing over 15 
million adaptable parameters (Fig. 3). This gen-
erator begins by accepting a 128-element vec-
tor comprised of random numbers uniformly 
distributed between 0 and 1 (exclusive). The 
process starts with these values passing through 
a fully connected (FC) layer, equipped with 
15,360 neurons. The output from this layer is 
then reshaped into a three-dimensional structure, 
analogous to a 6×5 pixel image, albeit with an 

extensive depth of 512 channels. Following this, 
the network employs alternating layers of standard 
2D convolutions (Conv) and 2D transposed convo-
lutions (often called Conv trans up or “deconvolu-
tions”). These layers utilize a 5x5 kernel size and 
employ ‘same’ padding to maintain dimensional-
ity, while the transposed convolutions also apply a 
stride of 2, effectively doubling the spatial dimen-
sions of their input.

Excluding the final layer, each layer’s acti-
vation is facilitated by a Leaky ReLU function, 
which introduces non-linearity. The terminal layer, 
however, employs a hyperbolic tangent (tanh) acti-
vation function. This choice is strategic, as the tanh 
function’s output range matches the desired bound 
[-1, 1] for image generation and offers cantered 
zero output, which is advantageous for training.

Through five cycles of alternating convolution 
and transposed convolution layers, with each trans-
posed layer expanding the input’s size, the architec-
ture ultimately yields an image with a resolution of 
192×160 pixels, containing a single-color channel.

Discriminator

The discriminator employed in this study 
follows a conventional CNN design tailored for 
binary classification tasks [31, 32]. Specifically, 
it comprises 11 layers, in total approximately 9.5 
million trainable parameters (Fig. 3). For input, 
a single-channel image of dimensions 192×160 

Figure 3. The architecture of deep convolution image generator (left) and discriminator (right)
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is utilized. This input undergoes five iterations 
through convolutional layers, with alternating 
strides of 1 and 2. The stride of 2 facilitates 
subsampling since no pooling layers are inte-
grated into the architecture. The discriminator 
culminates with two fully connected (FC) lay-
ers. Throughout the network, all layers employ 
a Leaky ReLU activation function, with the ex-
ception of the final layer, which lacks activation.

Xtreme gradient boost

For the purpose of this study the classical 
XGBoost algorithm introduced by Chen [33], 
was slightly modified. XGBoost was intend 
for datasets with n examples and m features, as 
N{xi, yi}(|N| = n, xi, ∈ Rm, yi ∈ R). Application 
the S additive function, demonstrated in Equa-
tion. 2, enables to forecast the outcome:

	

 
𝑚𝑚𝑚𝑚𝑚𝑚

𝐺𝐺
𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷∈𝒟𝒟

𝔼𝔼𝑥𝑥~ℙ𝑥𝑥 [𝐷𝐷(𝑥𝑥)] −  𝔼𝔼𝑧𝑧~ℙ𝑧𝑧[𝐷𝐷(𝐺𝐺(𝑧𝑧))] (1) 

where 𝔼𝔼𝑥𝑥~ℙ𝑥𝑥, 𝔼𝔼𝑧𝑧~ℙ𝑧𝑧  
𝑁𝑁{𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖}(|𝑁𝑁| = 𝑛𝑛, 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑚𝑚, 𝑦𝑦𝑖𝑖 ∈ 𝑅𝑅).  

𝑦𝑦𝑖𝑖𝑖𝑖 = ∑ 𝑓𝑓𝑠𝑠(𝑥𝑥𝑖𝑖)
𝑆𝑆

𝑠𝑠=1
, 𝑓𝑓𝑠𝑠 ∈ ℱ (2) 

 
, ℱ = {𝑓𝑓(𝑥𝑥) = 𝜗𝜗𝑞𝑞(𝑥𝑥)}(𝑞𝑞: ℝ𝑚𝑚 → 𝑇𝑇, 𝜗𝜗 ∈ ℝ𝑇𝑇)  
 

𝒥𝒥 = ∑ 𝑙𝑙(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖) + ∑ 𝜙𝜙(𝑓𝑓𝑗𝑗)
𝑗𝑗𝑖𝑖

 (3) 

𝜙𝜙(𝑓𝑓) = 𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆‖𝜗𝜗‖2 (4) 

 

𝒥𝒥(𝑡𝑡) = ∑ 𝑙𝑙 (𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖
(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (5) 

 

𝒥𝒥(𝑡𝑡) ≃ ∑
𝑙𝑙(𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖

(𝑡𝑡−1)) + gift(𝑥𝑥𝑖𝑖) +

+ 12 ℎ𝑖𝑖𝑓𝑓𝑡𝑡
2(𝑥𝑥𝑖𝑖) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (6) 

  

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] + 𝜗𝜗(𝑓𝑓𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
 (7) 

 

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] +  𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆 ∑ 𝜔𝜔2

𝑗𝑗

𝑇𝑇

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
 (8) 

= ∑ [(∑ 𝑔𝑔𝑖𝑖
𝑖𝑖∈𝑆𝑆𝑗𝑗

) 𝜔𝜔𝑗𝑗 + 1
2 (∑ ℎ𝑖𝑖 +

𝑖𝑖∈𝑆𝑆𝑗𝑗

𝜆𝜆) 𝜔𝜔2
𝑗𝑗] +

𝑇𝑇

𝑗𝑗=1
𝛾𝛾𝛾𝛾  

 

𝜔𝜔∗
𝑗𝑗(𝑞𝑞) = −

∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆 (9) 

𝒥𝒥(𝑡𝑡)̃ (𝑞𝑞) = − 1
2 ∑

(∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗 )
2

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆

𝑇𝑇

𝑗𝑗=1
 (10) 

 

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (11) 

 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2

𝑛𝑛

𝑖𝑖=1
, (12) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √𝑀𝑀𝑀𝑀𝑀𝑀 (13) 

 

	 (2)

where:	

 
𝑚𝑚𝑚𝑚𝑚𝑚

𝐺𝐺
𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷∈𝒟𝒟

𝔼𝔼𝑥𝑥~ℙ𝑥𝑥 [𝐷𝐷(𝑥𝑥)] −  𝔼𝔼𝑧𝑧~ℙ𝑧𝑧[𝐷𝐷(𝐺𝐺(𝑧𝑧))] (1) 

where 𝔼𝔼𝑥𝑥~ℙ𝑥𝑥, 𝔼𝔼𝑧𝑧~ℙ𝑧𝑧  
𝑁𝑁{𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖}(|𝑁𝑁| = 𝑛𝑛, 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑚𝑚, 𝑦𝑦𝑖𝑖 ∈ 𝑅𝑅).  

𝑦𝑦𝑖𝑖𝑖𝑖 = ∑ 𝑓𝑓𝑠𝑠(𝑥𝑥𝑖𝑖)
𝑆𝑆

𝑠𝑠=1
, 𝑓𝑓𝑠𝑠 ∈ ℱ (2) 

 
, ℱ = {𝑓𝑓(𝑥𝑥) = 𝜗𝜗𝑞𝑞(𝑥𝑥)}(𝑞𝑞: ℝ𝑚𝑚 → 𝑇𝑇, 𝜗𝜗 ∈ ℝ𝑇𝑇)  
 

𝒥𝒥 = ∑ 𝑙𝑙(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖) + ∑ 𝜙𝜙(𝑓𝑓𝑗𝑗)
𝑗𝑗𝑖𝑖

 (3) 

𝜙𝜙(𝑓𝑓) = 𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆‖𝜗𝜗‖2 (4) 

 

𝒥𝒥(𝑡𝑡) = ∑ 𝑙𝑙 (𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖
(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (5) 

 

𝒥𝒥(𝑡𝑡) ≃ ∑
𝑙𝑙(𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖

(𝑡𝑡−1)) + gift(𝑥𝑥𝑖𝑖) +

+ 12 ℎ𝑖𝑖𝑓𝑓𝑡𝑡
2(𝑥𝑥𝑖𝑖) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (6) 

  

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] + 𝜗𝜗(𝑓𝑓𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
 (7) 

 

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] +  𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆 ∑ 𝜔𝜔2

𝑗𝑗

𝑇𝑇

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
 (8) 

= ∑ [(∑ 𝑔𝑔𝑖𝑖
𝑖𝑖∈𝑆𝑆𝑗𝑗

) 𝜔𝜔𝑗𝑗 + 1
2 (∑ ℎ𝑖𝑖 +

𝑖𝑖∈𝑆𝑆𝑗𝑗

𝜆𝜆) 𝜔𝜔2
𝑗𝑗] +

𝑇𝑇

𝑗𝑗=1
𝛾𝛾𝛾𝛾  

 

𝜔𝜔∗
𝑗𝑗(𝑞𝑞) = −

∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆 (9) 

𝒥𝒥(𝑡𝑡)̃ (𝑞𝑞) = − 1
2 ∑

(∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗 )
2

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆

𝑇𝑇

𝑗𝑗=1
 (10) 

 

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (11) 

 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2

𝑛𝑛

𝑖𝑖=1
, (12) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √𝑀𝑀𝑀𝑀𝑀𝑀 (13) 

 

denotes the spatial regression of trees, 
q is the tree structures, and T represents 
the number of leaves on the tree. The 
cumulative score is determined by 

 
𝑚𝑚𝑚𝑚𝑚𝑚

𝐺𝐺
𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷∈𝒟𝒟

𝔼𝔼𝑥𝑥~ℙ𝑥𝑥 [𝐷𝐷(𝑥𝑥)] −  𝔼𝔼𝑧𝑧~ℙ𝑧𝑧[𝐷𝐷(𝐺𝐺(𝑧𝑧))] (1) 

where 𝔼𝔼𝑥𝑥~ℙ𝑥𝑥, 𝔼𝔼𝑧𝑧~ℙ𝑧𝑧  
𝑁𝑁{𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖}(|𝑁𝑁| = 𝑛𝑛, 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑚𝑚, 𝑦𝑦𝑖𝑖 ∈ 𝑅𝑅).  

𝑦𝑦𝑖𝑖𝑖𝑖 = ∑ 𝑓𝑓𝑠𝑠(𝑥𝑥𝑖𝑖)
𝑆𝑆

𝑠𝑠=1
, 𝑓𝑓𝑠𝑠 ∈ ℱ (2) 

 
, ℱ = {𝑓𝑓(𝑥𝑥) = 𝜗𝜗𝑞𝑞(𝑥𝑥)}(𝑞𝑞: ℝ𝑚𝑚 → 𝑇𝑇, 𝜗𝜗 ∈ ℝ𝑇𝑇)  
 

𝒥𝒥 = ∑ 𝑙𝑙(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖) + ∑ 𝜙𝜙(𝑓𝑓𝑗𝑗)
𝑗𝑗𝑖𝑖

 (3) 

𝜙𝜙(𝑓𝑓) = 𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆‖𝜗𝜗‖2 (4) 

 

𝒥𝒥(𝑡𝑡) = ∑ 𝑙𝑙 (𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖
(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (5) 

 

𝒥𝒥(𝑡𝑡) ≃ ∑
𝑙𝑙(𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖

(𝑡𝑡−1)) + gift(𝑥𝑥𝑖𝑖) +

+ 12 ℎ𝑖𝑖𝑓𝑓𝑡𝑡
2(𝑥𝑥𝑖𝑖) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (6) 

  

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] + 𝜗𝜗(𝑓𝑓𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
 (7) 

 

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] +  𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆 ∑ 𝜔𝜔2

𝑗𝑗

𝑇𝑇

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
 (8) 

= ∑ [(∑ 𝑔𝑔𝑖𝑖
𝑖𝑖∈𝑆𝑆𝑗𝑗

) 𝜔𝜔𝑗𝑗 + 1
2 (∑ ℎ𝑖𝑖 +

𝑖𝑖∈𝑆𝑆𝑗𝑗

𝜆𝜆) 𝜔𝜔2
𝑗𝑗] +

𝑇𝑇

𝑗𝑗=1
𝛾𝛾𝛾𝛾  

 

𝜔𝜔∗
𝑗𝑗(𝑞𝑞) = −

∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆 (9) 

𝒥𝒥(𝑡𝑡)̃ (𝑞𝑞) = − 1
2 ∑

(∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗 )
2

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆

𝑇𝑇

𝑗𝑗=1
 (10) 

 

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (11) 

 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2

𝑛𝑛

𝑖𝑖=1
, (12) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √𝑀𝑀𝑀𝑀𝑀𝑀 (13) 

 

, 
aggregating the respective leaves. The 
regularization objective for acquiring a 
set of functions is defined by Equation 3 
and Equation 4 [33].

	

 
𝑚𝑚𝑚𝑚𝑚𝑚

𝐺𝐺
𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷∈𝒟𝒟

𝔼𝔼𝑥𝑥~ℙ𝑥𝑥 [𝐷𝐷(𝑥𝑥)] −  𝔼𝔼𝑧𝑧~ℙ𝑧𝑧[𝐷𝐷(𝐺𝐺(𝑧𝑧))] (1) 

where 𝔼𝔼𝑥𝑥~ℙ𝑥𝑥, 𝔼𝔼𝑧𝑧~ℙ𝑧𝑧  
𝑁𝑁{𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖}(|𝑁𝑁| = 𝑛𝑛, 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑚𝑚, 𝑦𝑦𝑖𝑖 ∈ 𝑅𝑅).  

𝑦𝑦𝑖𝑖𝑖𝑖 = ∑ 𝑓𝑓𝑠𝑠(𝑥𝑥𝑖𝑖)
𝑆𝑆

𝑠𝑠=1
, 𝑓𝑓𝑠𝑠 ∈ ℱ (2) 

 
, ℱ = {𝑓𝑓(𝑥𝑥) = 𝜗𝜗𝑞𝑞(𝑥𝑥)}(𝑞𝑞: ℝ𝑚𝑚 → 𝑇𝑇, 𝜗𝜗 ∈ ℝ𝑇𝑇)  
 

𝒥𝒥 = ∑ 𝑙𝑙(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖) + ∑ 𝜙𝜙(𝑓𝑓𝑗𝑗)
𝑗𝑗𝑖𝑖

 (3) 

𝜙𝜙(𝑓𝑓) = 𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆‖𝜗𝜗‖2 (4) 

 

𝒥𝒥(𝑡𝑡) = ∑ 𝑙𝑙 (𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖
(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (5) 

 

𝒥𝒥(𝑡𝑡) ≃ ∑
𝑙𝑙(𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖

(𝑡𝑡−1)) + gift(𝑥𝑥𝑖𝑖) +

+ 12 ℎ𝑖𝑖𝑓𝑓𝑡𝑡
2(𝑥𝑥𝑖𝑖) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (6) 

  

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] + 𝜗𝜗(𝑓𝑓𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
 (7) 

 

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] +  𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆 ∑ 𝜔𝜔2

𝑗𝑗

𝑇𝑇

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
 (8) 

= ∑ [(∑ 𝑔𝑔𝑖𝑖
𝑖𝑖∈𝑆𝑆𝑗𝑗

) 𝜔𝜔𝑗𝑗 + 1
2 (∑ ℎ𝑖𝑖 +

𝑖𝑖∈𝑆𝑆𝑗𝑗

𝜆𝜆) 𝜔𝜔2
𝑗𝑗] +

𝑇𝑇

𝑗𝑗=1
𝛾𝛾𝛾𝛾  

 

𝜔𝜔∗
𝑗𝑗(𝑞𝑞) = −

∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆 (9) 

𝒥𝒥(𝑡𝑡)̃ (𝑞𝑞) = − 1
2 ∑

(∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗 )
2

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆

𝑇𝑇

𝑗𝑗=1
 (10) 

 

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (11) 

 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2

𝑛𝑛

𝑖𝑖=1
, (12) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √𝑀𝑀𝑀𝑀𝑀𝑀 (13) 

 

	 (3)

	

 
𝑚𝑚𝑚𝑚𝑚𝑚

𝐺𝐺
𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷∈𝒟𝒟

𝔼𝔼𝑥𝑥~ℙ𝑥𝑥 [𝐷𝐷(𝑥𝑥)] −  𝔼𝔼𝑧𝑧~ℙ𝑧𝑧[𝐷𝐷(𝐺𝐺(𝑧𝑧))] (1) 

where 𝔼𝔼𝑥𝑥~ℙ𝑥𝑥, 𝔼𝔼𝑧𝑧~ℙ𝑧𝑧  
𝑁𝑁{𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖}(|𝑁𝑁| = 𝑛𝑛, 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑚𝑚, 𝑦𝑦𝑖𝑖 ∈ 𝑅𝑅).  

𝑦𝑦𝑖𝑖𝑖𝑖 = ∑ 𝑓𝑓𝑠𝑠(𝑥𝑥𝑖𝑖)
𝑆𝑆

𝑠𝑠=1
, 𝑓𝑓𝑠𝑠 ∈ ℱ (2) 

 
, ℱ = {𝑓𝑓(𝑥𝑥) = 𝜗𝜗𝑞𝑞(𝑥𝑥)}(𝑞𝑞: ℝ𝑚𝑚 → 𝑇𝑇, 𝜗𝜗 ∈ ℝ𝑇𝑇)  
 

𝒥𝒥 = ∑ 𝑙𝑙(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖) + ∑ 𝜙𝜙(𝑓𝑓𝑗𝑗)
𝑗𝑗𝑖𝑖

 (3) 

𝜙𝜙(𝑓𝑓) = 𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆‖𝜗𝜗‖2 (4) 

 

𝒥𝒥(𝑡𝑡) = ∑ 𝑙𝑙 (𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖
(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (5) 

 

𝒥𝒥(𝑡𝑡) ≃ ∑
𝑙𝑙(𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖

(𝑡𝑡−1)) + gift(𝑥𝑥𝑖𝑖) +

+ 12 ℎ𝑖𝑖𝑓𝑓𝑡𝑡
2(𝑥𝑥𝑖𝑖) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (6) 

  

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] + 𝜗𝜗(𝑓𝑓𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
 (7) 

 

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] +  𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆 ∑ 𝜔𝜔2

𝑗𝑗

𝑇𝑇

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
 (8) 

= ∑ [(∑ 𝑔𝑔𝑖𝑖
𝑖𝑖∈𝑆𝑆𝑗𝑗

) 𝜔𝜔𝑗𝑗 + 1
2 (∑ ℎ𝑖𝑖 +

𝑖𝑖∈𝑆𝑆𝑗𝑗

𝜆𝜆) 𝜔𝜔2
𝑗𝑗] +

𝑇𝑇

𝑗𝑗=1
𝛾𝛾𝛾𝛾  

 

𝜔𝜔∗
𝑗𝑗(𝑞𝑞) = −

∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆 (9) 

𝒥𝒥(𝑡𝑡)̃ (𝑞𝑞) = − 1
2 ∑

(∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗 )
2

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆

𝑇𝑇

𝑗𝑗=1
 (10) 

 

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (11) 

 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2

𝑛𝑛

𝑖𝑖=1
, (12) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √𝑀𝑀𝑀𝑀𝑀𝑀 (13) 

 

	 (4)

where:	 l is the loss function – the difference be-
tween the predicted value expressed by 
yii and the target value yi. The ϕ indicates 
complexity of the model. The extra regu-
larization term λ helps to smooth the fi-
nal learned weights, reducing the risk of 
over-fitting. Intuitively, the regularized 
objective tends to favour models that use 
simple and predictive functions. Con-
sequently, [33] employed an additive 
approach, demonstrated in Equation 5. 
Here, yi(t) signifies the prediction of the 
i-th instance at the t-th iteration.

	

 
𝑚𝑚𝑚𝑚𝑚𝑚

𝐺𝐺
𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷∈𝒟𝒟

𝔼𝔼𝑥𝑥~ℙ𝑥𝑥 [𝐷𝐷(𝑥𝑥)] −  𝔼𝔼𝑧𝑧~ℙ𝑧𝑧[𝐷𝐷(𝐺𝐺(𝑧𝑧))] (1) 

where 𝔼𝔼𝑥𝑥~ℙ𝑥𝑥, 𝔼𝔼𝑧𝑧~ℙ𝑧𝑧  
𝑁𝑁{𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖}(|𝑁𝑁| = 𝑛𝑛, 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑚𝑚, 𝑦𝑦𝑖𝑖 ∈ 𝑅𝑅).  

𝑦𝑦𝑖𝑖𝑖𝑖 = ∑ 𝑓𝑓𝑠𝑠(𝑥𝑥𝑖𝑖)
𝑆𝑆

𝑠𝑠=1
, 𝑓𝑓𝑠𝑠 ∈ ℱ (2) 

 
, ℱ = {𝑓𝑓(𝑥𝑥) = 𝜗𝜗𝑞𝑞(𝑥𝑥)}(𝑞𝑞: ℝ𝑚𝑚 → 𝑇𝑇, 𝜗𝜗 ∈ ℝ𝑇𝑇)  
 

𝒥𝒥 = ∑ 𝑙𝑙(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖) + ∑ 𝜙𝜙(𝑓𝑓𝑗𝑗)
𝑗𝑗𝑖𝑖

 (3) 

𝜙𝜙(𝑓𝑓) = 𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆‖𝜗𝜗‖2 (4) 

 

𝒥𝒥(𝑡𝑡) = ∑ 𝑙𝑙 (𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖
(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (5) 

 

𝒥𝒥(𝑡𝑡) ≃ ∑
𝑙𝑙(𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖

(𝑡𝑡−1)) + gift(𝑥𝑥𝑖𝑖) +

+ 12 ℎ𝑖𝑖𝑓𝑓𝑡𝑡
2(𝑥𝑥𝑖𝑖) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (6) 

  

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] + 𝜗𝜗(𝑓𝑓𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
 (7) 

 

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] +  𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆 ∑ 𝜔𝜔2

𝑗𝑗

𝑇𝑇

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
 (8) 

= ∑ [(∑ 𝑔𝑔𝑖𝑖
𝑖𝑖∈𝑆𝑆𝑗𝑗

) 𝜔𝜔𝑗𝑗 + 1
2 (∑ ℎ𝑖𝑖 +

𝑖𝑖∈𝑆𝑆𝑗𝑗

𝜆𝜆) 𝜔𝜔2
𝑗𝑗] +

𝑇𝑇

𝑗𝑗=1
𝛾𝛾𝛾𝛾  

 

𝜔𝜔∗
𝑗𝑗(𝑞𝑞) = −

∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆 (9) 

𝒥𝒥(𝑡𝑡)̃ (𝑞𝑞) = − 1
2 ∑

(∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗 )
2

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆

𝑇𝑇

𝑗𝑗=1
 (10) 

 

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (11) 

 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2

𝑛𝑛

𝑖𝑖=1
, (12) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √𝑀𝑀𝑀𝑀𝑀𝑀 (13) 

 

	 (5)

Equation 5. can be improved further with 
a second-order approximation, as depicted in 
Equation 6 [32].

	

 
𝑚𝑚𝑚𝑚𝑚𝑚

𝐺𝐺
𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷∈𝒟𝒟

𝔼𝔼𝑥𝑥~ℙ𝑥𝑥 [𝐷𝐷(𝑥𝑥)] −  𝔼𝔼𝑧𝑧~ℙ𝑧𝑧[𝐷𝐷(𝐺𝐺(𝑧𝑧))] (1) 

where 𝔼𝔼𝑥𝑥~ℙ𝑥𝑥, 𝔼𝔼𝑧𝑧~ℙ𝑧𝑧  
𝑁𝑁{𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖}(|𝑁𝑁| = 𝑛𝑛, 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑚𝑚, 𝑦𝑦𝑖𝑖 ∈ 𝑅𝑅).  

𝑦𝑦𝑖𝑖𝑖𝑖 = ∑ 𝑓𝑓𝑠𝑠(𝑥𝑥𝑖𝑖)
𝑆𝑆

𝑠𝑠=1
, 𝑓𝑓𝑠𝑠 ∈ ℱ (2) 

 
, ℱ = {𝑓𝑓(𝑥𝑥) = 𝜗𝜗𝑞𝑞(𝑥𝑥)}(𝑞𝑞: ℝ𝑚𝑚 → 𝑇𝑇, 𝜗𝜗 ∈ ℝ𝑇𝑇)  
 

𝒥𝒥 = ∑ 𝑙𝑙(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖) + ∑ 𝜙𝜙(𝑓𝑓𝑗𝑗)
𝑗𝑗𝑖𝑖

 (3) 

𝜙𝜙(𝑓𝑓) = 𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆‖𝜗𝜗‖2 (4) 

 

𝒥𝒥(𝑡𝑡) = ∑ 𝑙𝑙 (𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖
(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (5) 

 

𝒥𝒥(𝑡𝑡) ≃ ∑
𝑙𝑙(𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖

(𝑡𝑡−1)) + gift(𝑥𝑥𝑖𝑖) +

+ 12 ℎ𝑖𝑖𝑓𝑓𝑡𝑡
2(𝑥𝑥𝑖𝑖) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (6) 

  

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] + 𝜗𝜗(𝑓𝑓𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
 (7) 

 

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] +  𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆 ∑ 𝜔𝜔2

𝑗𝑗

𝑇𝑇

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
 (8) 

= ∑ [(∑ 𝑔𝑔𝑖𝑖
𝑖𝑖∈𝑆𝑆𝑗𝑗

) 𝜔𝜔𝑗𝑗 + 1
2 (∑ ℎ𝑖𝑖 +

𝑖𝑖∈𝑆𝑆𝑗𝑗

𝜆𝜆) 𝜔𝜔2
𝑗𝑗] +

𝑇𝑇

𝑗𝑗=1
𝛾𝛾𝛾𝛾  

 

𝜔𝜔∗
𝑗𝑗(𝑞𝑞) = −

∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆 (9) 

𝒥𝒥(𝑡𝑡)̃ (𝑞𝑞) = − 1
2 ∑

(∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗 )
2

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆

𝑇𝑇

𝑗𝑗=1
 (10) 

 

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (11) 

 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2

𝑛𝑛

𝑖𝑖=1
, (12) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √𝑀𝑀𝑀𝑀𝑀𝑀 (13) 

 

	 (6)

where:	
 
where: 𝑔𝑔𝑖𝑖 = 𝜕𝜕𝑦𝑦𝑖𝑖𝑖𝑖(𝑡𝑡−1)𝑙𝑙(𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖

(𝑡𝑡−1)) and ℎ𝑖𝑖 = 𝜕𝜕2
𝑦𝑦𝑖𝑖𝑖𝑖(𝑡𝑡−1)𝑙𝑙(𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖

(𝑡𝑡−1))  
 

 and 
 
where: 𝑔𝑔𝑖𝑖 = 𝜕𝜕𝑦𝑦𝑖𝑖𝑖𝑖(𝑡𝑡−1)𝑙𝑙(𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖

(𝑡𝑡−1)) and ℎ𝑖𝑖 = 𝜕𝜕2
𝑦𝑦𝑖𝑖𝑖𝑖(𝑡𝑡−1)𝑙𝑙(𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖

(𝑡𝑡−1))  
 

 
both gi and hi serving as loss functions for 
the first and second gradient statistics at 
step t, respectively. Equation. 6 can be fur-
ther transformed by eliminating the con-
stant term, resulting in Equation 7 [33].

	

 
𝑚𝑚𝑚𝑚𝑚𝑚

𝐺𝐺
𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷∈𝒟𝒟

𝔼𝔼𝑥𝑥~ℙ𝑥𝑥 [𝐷𝐷(𝑥𝑥)] −  𝔼𝔼𝑧𝑧~ℙ𝑧𝑧[𝐷𝐷(𝐺𝐺(𝑧𝑧))] (1) 

where 𝔼𝔼𝑥𝑥~ℙ𝑥𝑥, 𝔼𝔼𝑧𝑧~ℙ𝑧𝑧  
𝑁𝑁{𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖}(|𝑁𝑁| = 𝑛𝑛, 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑚𝑚, 𝑦𝑦𝑖𝑖 ∈ 𝑅𝑅).  

𝑦𝑦𝑖𝑖𝑖𝑖 = ∑ 𝑓𝑓𝑠𝑠(𝑥𝑥𝑖𝑖)
𝑆𝑆

𝑠𝑠=1
, 𝑓𝑓𝑠𝑠 ∈ ℱ (2) 

 
, ℱ = {𝑓𝑓(𝑥𝑥) = 𝜗𝜗𝑞𝑞(𝑥𝑥)}(𝑞𝑞: ℝ𝑚𝑚 → 𝑇𝑇, 𝜗𝜗 ∈ ℝ𝑇𝑇)  
 

𝒥𝒥 = ∑ 𝑙𝑙(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖) + ∑ 𝜙𝜙(𝑓𝑓𝑗𝑗)
𝑗𝑗𝑖𝑖

 (3) 

𝜙𝜙(𝑓𝑓) = 𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆‖𝜗𝜗‖2 (4) 

 

𝒥𝒥(𝑡𝑡) = ∑ 𝑙𝑙 (𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖
(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (5) 

 

𝒥𝒥(𝑡𝑡) ≃ ∑
𝑙𝑙(𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖

(𝑡𝑡−1)) + gift(𝑥𝑥𝑖𝑖) +

+ 12 ℎ𝑖𝑖𝑓𝑓𝑡𝑡
2(𝑥𝑥𝑖𝑖) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (6) 

  

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] + 𝜗𝜗(𝑓𝑓𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
 (7) 

 

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] +  𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆 ∑ 𝜔𝜔2

𝑗𝑗

𝑇𝑇

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
 (8) 

= ∑ [(∑ 𝑔𝑔𝑖𝑖
𝑖𝑖∈𝑆𝑆𝑗𝑗

) 𝜔𝜔𝑗𝑗 + 1
2 (∑ ℎ𝑖𝑖 +

𝑖𝑖∈𝑆𝑆𝑗𝑗

𝜆𝜆) 𝜔𝜔2
𝑗𝑗] +

𝑇𝑇

𝑗𝑗=1
𝛾𝛾𝛾𝛾  

 

𝜔𝜔∗
𝑗𝑗(𝑞𝑞) = −

∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆 (9) 

𝒥𝒥(𝑡𝑡)̃ (𝑞𝑞) = − 1
2 ∑

(∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗 )
2

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆

𝑇𝑇

𝑗𝑗=1
 (10) 

 

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (11) 

 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2

𝑛𝑛

𝑖𝑖=1
, (12) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √𝑀𝑀𝑀𝑀𝑀𝑀 (13) 

 

	 (7)

Furthermore, if Sj = {i|q(xi) = j} will be de-
fined as a leaf j, the Equation 7. can be expressed 
in a form of Equation 8 and Equation 9 by ex-
panding 

 
𝑚𝑚𝑚𝑚𝑚𝑚

𝐺𝐺
𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷∈𝒟𝒟

𝔼𝔼𝑥𝑥~ℙ𝑥𝑥 [𝐷𝐷(𝑥𝑥)] −  𝔼𝔼𝑧𝑧~ℙ𝑧𝑧[𝐷𝐷(𝐺𝐺(𝑧𝑧))] (1) 

where 𝔼𝔼𝑥𝑥~ℙ𝑥𝑥, 𝔼𝔼𝑧𝑧~ℙ𝑧𝑧  
𝑁𝑁{𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖}(|𝑁𝑁| = 𝑛𝑛, 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑚𝑚, 𝑦𝑦𝑖𝑖 ∈ 𝑅𝑅).  

𝑦𝑦𝑖𝑖𝑖𝑖 = ∑ 𝑓𝑓𝑠𝑠(𝑥𝑥𝑖𝑖)
𝑆𝑆

𝑠𝑠=1
, 𝑓𝑓𝑠𝑠 ∈ ℱ (2) 

 
, ℱ = {𝑓𝑓(𝑥𝑥) = 𝜗𝜗𝑞𝑞(𝑥𝑥)}(𝑞𝑞: ℝ𝑚𝑚 → 𝑇𝑇, 𝜗𝜗 ∈ ℝ𝑇𝑇)  
 

𝒥𝒥 = ∑ 𝑙𝑙(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖) + ∑ 𝜙𝜙(𝑓𝑓𝑗𝑗)
𝑗𝑗𝑖𝑖

 (3) 

𝜙𝜙(𝑓𝑓) = 𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆‖𝜗𝜗‖2 (4) 

 

𝒥𝒥(𝑡𝑡) = ∑ 𝑙𝑙 (𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖
(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (5) 

 

𝒥𝒥(𝑡𝑡) ≃ ∑
𝑙𝑙(𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖

(𝑡𝑡−1)) + gift(𝑥𝑥𝑖𝑖) +

+ 12 ℎ𝑖𝑖𝑓𝑓𝑡𝑡
2(𝑥𝑥𝑖𝑖) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (6) 

  

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] + 𝜗𝜗(𝑓𝑓𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
 (7) 

 

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] +  𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆 ∑ 𝜔𝜔2

𝑗𝑗

𝑇𝑇

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
 (8) 

= ∑ [(∑ 𝑔𝑔𝑖𝑖
𝑖𝑖∈𝑆𝑆𝑗𝑗

) 𝜔𝜔𝑗𝑗 + 1
2 (∑ ℎ𝑖𝑖 +

𝑖𝑖∈𝑆𝑆𝑗𝑗

𝜆𝜆) 𝜔𝜔2
𝑗𝑗] +

𝑇𝑇

𝑗𝑗=1
𝛾𝛾𝛾𝛾  

 

𝜔𝜔∗
𝑗𝑗(𝑞𝑞) = −

∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆 (9) 

𝒥𝒥(𝑡𝑡)̃ (𝑞𝑞) = − 1
2 ∑

(∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗 )
2

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆

𝑇𝑇

𝑗𝑗=1
 (10) 

 

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (11) 

 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2

𝑛𝑛

𝑖𝑖=1
, (12) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √𝑀𝑀𝑀𝑀𝑀𝑀 (13) 

 

 [31].

	

 
𝑚𝑚𝑚𝑚𝑚𝑚

𝐺𝐺
𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷∈𝒟𝒟

𝔼𝔼𝑥𝑥~ℙ𝑥𝑥 [𝐷𝐷(𝑥𝑥)] −  𝔼𝔼𝑧𝑧~ℙ𝑧𝑧[𝐷𝐷(𝐺𝐺(𝑧𝑧))] (1) 

where 𝔼𝔼𝑥𝑥~ℙ𝑥𝑥, 𝔼𝔼𝑧𝑧~ℙ𝑧𝑧  
𝑁𝑁{𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖}(|𝑁𝑁| = 𝑛𝑛, 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑚𝑚, 𝑦𝑦𝑖𝑖 ∈ 𝑅𝑅).  

𝑦𝑦𝑖𝑖𝑖𝑖 = ∑ 𝑓𝑓𝑠𝑠(𝑥𝑥𝑖𝑖)
𝑆𝑆

𝑠𝑠=1
, 𝑓𝑓𝑠𝑠 ∈ ℱ (2) 

 
, ℱ = {𝑓𝑓(𝑥𝑥) = 𝜗𝜗𝑞𝑞(𝑥𝑥)}(𝑞𝑞: ℝ𝑚𝑚 → 𝑇𝑇, 𝜗𝜗 ∈ ℝ𝑇𝑇)  
 

𝒥𝒥 = ∑ 𝑙𝑙(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖) + ∑ 𝜙𝜙(𝑓𝑓𝑗𝑗)
𝑗𝑗𝑖𝑖

 (3) 

𝜙𝜙(𝑓𝑓) = 𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆‖𝜗𝜗‖2 (4) 

 

𝒥𝒥(𝑡𝑡) = ∑ 𝑙𝑙 (𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖
(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (5) 

 

𝒥𝒥(𝑡𝑡) ≃ ∑
𝑙𝑙(𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖

(𝑡𝑡−1)) + gift(𝑥𝑥𝑖𝑖) +

+ 12 ℎ𝑖𝑖𝑓𝑓𝑡𝑡
2(𝑥𝑥𝑖𝑖) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (6) 

  

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] + 𝜗𝜗(𝑓𝑓𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
 (7) 

 

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] +  𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆 ∑ 𝜔𝜔2

𝑗𝑗

𝑇𝑇

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
 (8) 

= ∑ [(∑ 𝑔𝑔𝑖𝑖
𝑖𝑖∈𝑆𝑆𝑗𝑗

) 𝜔𝜔𝑗𝑗 + 1
2 (∑ ℎ𝑖𝑖 +

𝑖𝑖∈𝑆𝑆𝑗𝑗

𝜆𝜆) 𝜔𝜔2
𝑗𝑗] +

𝑇𝑇

𝑗𝑗=1
𝛾𝛾𝛾𝛾  

 

𝜔𝜔∗
𝑗𝑗(𝑞𝑞) = −

∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆 (9) 

𝒥𝒥(𝑡𝑡)̃ (𝑞𝑞) = − 1
2 ∑

(∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗 )
2

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆

𝑇𝑇

𝑗𝑗=1
 (10) 

 

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (11) 

 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2

𝑛𝑛

𝑖𝑖=1
, (12) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √𝑀𝑀𝑀𝑀𝑀𝑀 (13) 

 

	 (8)

The optimal value ω of leaf j for the static 
function q is expressed by Equation 9 and Equa-
tion 10 [31].

	

 
𝑚𝑚𝑚𝑚𝑚𝑚

𝐺𝐺
𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷∈𝒟𝒟

𝔼𝔼𝑥𝑥~ℙ𝑥𝑥 [𝐷𝐷(𝑥𝑥)] −  𝔼𝔼𝑧𝑧~ℙ𝑧𝑧[𝐷𝐷(𝐺𝐺(𝑧𝑧))] (1) 

where 𝔼𝔼𝑥𝑥~ℙ𝑥𝑥, 𝔼𝔼𝑧𝑧~ℙ𝑧𝑧  
𝑁𝑁{𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖}(|𝑁𝑁| = 𝑛𝑛, 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑚𝑚, 𝑦𝑦𝑖𝑖 ∈ 𝑅𝑅).  

𝑦𝑦𝑖𝑖𝑖𝑖 = ∑ 𝑓𝑓𝑠𝑠(𝑥𝑥𝑖𝑖)
𝑆𝑆

𝑠𝑠=1
, 𝑓𝑓𝑠𝑠 ∈ ℱ (2) 

 
, ℱ = {𝑓𝑓(𝑥𝑥) = 𝜗𝜗𝑞𝑞(𝑥𝑥)}(𝑞𝑞: ℝ𝑚𝑚 → 𝑇𝑇, 𝜗𝜗 ∈ ℝ𝑇𝑇)  
 

𝒥𝒥 = ∑ 𝑙𝑙(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖) + ∑ 𝜙𝜙(𝑓𝑓𝑗𝑗)
𝑗𝑗𝑖𝑖

 (3) 

𝜙𝜙(𝑓𝑓) = 𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆‖𝜗𝜗‖2 (4) 

 

𝒥𝒥(𝑡𝑡) = ∑ 𝑙𝑙 (𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖
(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (5) 

 

𝒥𝒥(𝑡𝑡) ≃ ∑
𝑙𝑙(𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖

(𝑡𝑡−1)) + gift(𝑥𝑥𝑖𝑖) +

+ 12 ℎ𝑖𝑖𝑓𝑓𝑡𝑡
2(𝑥𝑥𝑖𝑖) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (6) 

  

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] + 𝜗𝜗(𝑓𝑓𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
 (7) 

 

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] +  𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆 ∑ 𝜔𝜔2

𝑗𝑗

𝑇𝑇

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
 (8) 

= ∑ [(∑ 𝑔𝑔𝑖𝑖
𝑖𝑖∈𝑆𝑆𝑗𝑗

) 𝜔𝜔𝑗𝑗 + 1
2 (∑ ℎ𝑖𝑖 +

𝑖𝑖∈𝑆𝑆𝑗𝑗

𝜆𝜆) 𝜔𝜔2
𝑗𝑗] +

𝑇𝑇

𝑗𝑗=1
𝛾𝛾𝛾𝛾  

 

𝜔𝜔∗
𝑗𝑗(𝑞𝑞) = −

∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆 (9) 

𝒥𝒥(𝑡𝑡)̃ (𝑞𝑞) = − 1
2 ∑

(∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗 )
2

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆

𝑇𝑇

𝑗𝑗=1
 (10) 

 

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (11) 

 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2

𝑛𝑛

𝑖𝑖=1
, (12) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √𝑀𝑀𝑀𝑀𝑀𝑀 (13) 

 

	 (9)

	

 
𝑚𝑚𝑚𝑚𝑚𝑚

𝐺𝐺
𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷∈𝒟𝒟

𝔼𝔼𝑥𝑥~ℙ𝑥𝑥 [𝐷𝐷(𝑥𝑥)] −  𝔼𝔼𝑧𝑧~ℙ𝑧𝑧[𝐷𝐷(𝐺𝐺(𝑧𝑧))] (1) 

where 𝔼𝔼𝑥𝑥~ℙ𝑥𝑥, 𝔼𝔼𝑧𝑧~ℙ𝑧𝑧  
𝑁𝑁{𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖}(|𝑁𝑁| = 𝑛𝑛, 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑚𝑚, 𝑦𝑦𝑖𝑖 ∈ 𝑅𝑅).  

𝑦𝑦𝑖𝑖𝑖𝑖 = ∑ 𝑓𝑓𝑠𝑠(𝑥𝑥𝑖𝑖)
𝑆𝑆

𝑠𝑠=1
, 𝑓𝑓𝑠𝑠 ∈ ℱ (2) 

 
, ℱ = {𝑓𝑓(𝑥𝑥) = 𝜗𝜗𝑞𝑞(𝑥𝑥)}(𝑞𝑞: ℝ𝑚𝑚 → 𝑇𝑇, 𝜗𝜗 ∈ ℝ𝑇𝑇)  
 

𝒥𝒥 = ∑ 𝑙𝑙(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖) + ∑ 𝜙𝜙(𝑓𝑓𝑗𝑗)
𝑗𝑗𝑖𝑖

 (3) 

𝜙𝜙(𝑓𝑓) = 𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆‖𝜗𝜗‖2 (4) 

 

𝒥𝒥(𝑡𝑡) = ∑ 𝑙𝑙 (𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖
(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (5) 

 

𝒥𝒥(𝑡𝑡) ≃ ∑
𝑙𝑙(𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖

(𝑡𝑡−1)) + gift(𝑥𝑥𝑖𝑖) +

+ 12 ℎ𝑖𝑖𝑓𝑓𝑡𝑡
2(𝑥𝑥𝑖𝑖) + 𝜗𝜗(𝑓𝑓𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
 (6) 

  

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] + 𝜗𝜗(𝑓𝑓𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
 (7) 

 

𝒥𝒥(𝑡𝑡)̃ = ∑ [𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2 ℎ𝑖𝑖𝑓𝑓2

𝑡𝑡(𝑥𝑥𝑖𝑖)] +  𝛾𝛾𝛾𝛾 + 1
2 𝜆𝜆 ∑ 𝜔𝜔2

𝑗𝑗

𝑇𝑇

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
 (8) 

= ∑ [(∑ 𝑔𝑔𝑖𝑖
𝑖𝑖∈𝑆𝑆𝑗𝑗

) 𝜔𝜔𝑗𝑗 + 1
2 (∑ ℎ𝑖𝑖 +

𝑖𝑖∈𝑆𝑆𝑗𝑗

𝜆𝜆) 𝜔𝜔2
𝑗𝑗] +

𝑇𝑇

𝑗𝑗=1
𝛾𝛾𝛾𝛾  

 

𝜔𝜔∗
𝑗𝑗(𝑞𝑞) = −

∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆 (9) 

𝒥𝒥(𝑡𝑡)̃ (𝑞𝑞) = − 1
2 ∑

(∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝑆𝑆𝑗𝑗 )
2

∑ ℎ𝑖𝑖 +𝑖𝑖∈𝑆𝑆𝑗𝑗 𝜆𝜆

𝑇𝑇

𝑗𝑗=1
 (10) 

 

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (11) 

 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖̂𝑖)2

𝑛𝑛

𝑖𝑖=1
, (12) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √𝑀𝑀𝑀𝑀𝑀𝑀 (13) 

 

	 (10)

The whole data augmentation procedure with 
XGBoost module is described by Figure 4.

Classification model

Concerning the classification task, the well-
known VGG16 architecture was utilized. It 
consists of 16 weight layers. The architecture 
of VGG16 is distinguished by its clarity and 
homogeneity, comprising with an input layer, 
a series of convolutional layers followed by 
max-pooling layers, ending with fully connect-
ed layers (FC). The last FC layer is activated 
by Softmax function [34]. One parameter we 
experimented on was the use of dropout [35], 
which was applied on FC layers. Three differ-
ent dropout rates were examined: 0% (which is 
equivalent to no dropout), 25% and 50%. Ev-
ery model was trained by ImageNet dataset and 
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fine-tuned on the available images after dataset 
normalization was applied. The models were 
trained for a total of 100 epochs with the Adam 
optimization algorithm [36, 37].

Implementation details

The DCGAN implemented in this study aims 
to augment the dataset of retinitis pigmentosa im-
ages by generating realistic synthetic images. The 
DCGAN comprises two main components: the 
Generator and the Discriminator.

The Generator starts with a 128-dimensional 
noise vector passes through a fully connected layer 
with 15360 neurons and is reshaped into a 6×5 
pixel feature map with 512 channels. The network 
then uses a series of transposed convolutional 
layers to progressively upscale the feature maps. 
Each transposed convolution has a 5×5 kernel size, 
‘same’ padding to maintain spatial dimensions, and 
a stride of 2 to double the spatial size. Leaky ReLU 
activation functions with a negative slope coef-
ficient of 0.2 are applied to all layers except the 
last one. The final layer uses a hyperbolic tangent 
(tanh) activation function to produce output values 
in the range [-1, 1], matching the normalized pixel 
values of the images. After five upsampling stages, 
the Generator outputs a single-channel image of 
dimensions 192×160 pixels.

The Discriminator is designed to classify im-
ages as real or fake. It accepts an input image of 
size 192×160 pixels and processes it through five 
convolutional layers with a 5x5 kernel size, ‘same’ 
padding, and alternating strides of 1 and 2 to re-
duce spatial dimensions while increasing depth. 
Leaky ReLU activations with a negative slope of 
0.2 are used. Two fully connected layers follow the 
convolutional layers, culminating in a single scalar 
output representing the probability that the input 
image is real. The absence of an activation func-
tion in the final layer allows for a linear output suit-
able for the Wasserstein loss computation.

The DCGAN is trained using the Wasserstein 
loss function with a gradient penalty of 10 to en-
sure Lipschitz continuity, stabilizing the training 
process and preventing mode collapse. The Adam 
optimizer is employed with a learning rate of 
0.0002 and decay rate for momentum (β1) set to 
0.5. The batch size during training is set to 32 and 
continues for approximately 180 epochs or until 
the Discriminator’s loss converges to almost zero.

The VGG16 model is utilized for classifying 
retinal images into retinitis pigmentosa, cone–rod 
dystrophies, and healthy cases. VGG16 consists of 
13 convolutional and 3 fully connected layers, ap-
plying small 3×3 convolutional filters.  To adapt 
VGG16 for this specific classification task, the fi-
nal fully connected layer is modified to output three 

Figure 4. Algorithm 1
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classes. A Softmax activation function is applied to 
this layer to produce probabilities for each class.  
The model is initialized with weights pretrained on 
the ImageNet dataset to leverage transfer learning, 
allowing it to benefit from features learned from a 
large and diverse set of images. The input images 
are resized and normalized to match the expected in-
put format of the network. Training is conducted for 
100 epochs using the Adam optimizer. The learning 
rate is set to 0.0001. To prevent overfitting, dropout 
regularization is tested on the fully connected layers 
with rates of 0%, 25%, and 50%, respectively. The 
loss function used is Categorical Cross-Entropy, ap-
propriate for multi-class classification problems.

To enhance the classification performance fur-
ther, features from the penultimate layer of VGG16 
are extracted and fed into an XGBoost classifier. 
This combination leverages the deep feature ex-
traction capabilities of the convolutional neural 
network and the powerful classification abilities of 
gradient boosting trees, aiming to capture complex 
nonlinear relationships and interactions between 
features that may not be fully exploited by the neu-
ral network alone.

High-level abstract features extracted from 
the penultimate layer of the VGG16 model, 
which capture essential patterns and structures in 
the retinal images become as input features.

The following values ​​of characteristic param-
eters were implemented in the model: maximum 
depth = 6, learning rate (eta) = 0.1, and number 
from estimators is set to 100. As an objective 
function the multi:softprob is used, while for 
evaluation multiclass logarithmic loss is chosen.

Traditional augmentation techniques

Data augmentation is a vital technique in im-
age classification that enhances the performance 

and generalization capabilities of machine learn-
ing models, especially deep convolutional neu-
ral networks. This method involves creating new 
training samples by applying various transforma-
tions to the existing dataset, thereby increasing 
its diversity and reducing the likelihood of over-
fitting. By augmenting the data, models become 
more robust to variations in lighting, scale, orien-
tation, and other factors commonly encountered 
in real-world scenarios. Additionally, data aug-
mentation effectively enlarges the training dataset 
without the need for extra labelled samples, miti-
gating overfitting risks and improving the model’s 
ability to generalize to new, unseen data. It plays a 
crucial role in training deep learning models, en-
abling them to learn features that are more adapt-
able and responsive to the diverse variations pres-
ent in real-world images [3].

The constraints of dataset necessitated a lim-
ited image modification. Specifically, the follow-
ing sequences of transformations were applied: 
	• a horizontal flip – performed with a certain 

probability, 
	• brightness – adjusted to a range of 85–115% of 

the original intensity at the same probability, 
	• resizing – to 85–115% of its original dimen-

sions, it was shifted by –7% to +7% along 
each axis, and rotated between –7 and +7 de-
grees, all contingent on the same probability. 

More pronounced alterations to each image 
were the result of a higher probability value. This 
probability was denoted by the symbol p, which 
indicated the augmentation’s intensity level. Pix-
els that were erased during these transformations 
were filled with a zero value, corresponding to 
the background intensity. This procedure is expli-
cated in Figure 5. Probability values p of 0.25 and 
0.5 were tested.

Figure 5. Algorithm 2



330

Advances in Science and Technology Research Journal 2025, 19(2), 321–340

EXPERIMENTS AND RESULTS

To assess the effectiveness of the proposed 
methodology, an experiment was devised as 
follows: Firstly, a deep neural network archi-
tecture, capable of classifying three categories 
with satisfactory performance, was chosen. The 
dataset described earlier was used to train this 
network, employing traditional augmentation 
techniques. Subsequently, artificially generated 
images were incorporated into the training data-
set, creating a composite dataset. This enhanced 
dataset was then utilized to train the same net-
work again. The study aimed to demonstrate that 
the model, when trained with data augmented by 
the use of GANs, surpasses the performance of 
the model trained without such augmentation. 
Additionally, the effectiveness of GANs for data 
augmentation was compared with that of tradi-
tional augmentation techniques, and the impact 
of both augmentation methods was scrutinized. 

Evaluation metrics

The classifier quality assessment relied on 
standard accuracy (Eq. 11) metric.
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	(11)

where:	TP, FP and FN are true-positive, false-
positive, false-negative values, corre-
spondingly [38].

It is important to emphasize that all tests 
were performed using only real patient data. 
Synthetic data were used only for training the 
network. For all tests, to verify the accuracy 
of the developed model, leave-one-patient-out 
cross-validation (LOPOCV) was conducted. It 
involved training the model without data from 
one patient, which was then used for testing. 
This algorithm was repeated for each patient. 
Although this procedure is computationally 
intensive, it provides precise and unbiased in-
sights into the model’s performance. Through 
LOPOCV, the root mean squared error (RMSE) 
was calculated for n tests [39]:
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where:	n – indicates number of tests, yi – is a true 
value, 
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DCGAN augmentation

Proposed DCGAN models, employed a batch 
size of 32, steps per epochs 375, utilized the Adam 
optimizer, applied the Wasserstein loss function 
and included a gradient penalty equals 10. Training 
was ended when the discriminator’s loss reached 0, 
indicating its inability to differentiate between real 
and generated images. This criterion was achieved 
after approximately 180 epochs, as shown in Fig. 
6, illustrating the training losses as well as density 
distribution of the DCGAN trained on a subset of 
retinitis pigmentosa peripheral changes subjects 
(referred to as RP). Similar training trends were 
observed in another subset.

The process initialized with the generation of 
fake images using the DCGAN. Initially, the image 
resembles a blank canvas. By the 20th iteration, faint 
shadows began to emerge on the retinitis pigmen-
tosa images. By the 50th iteration, the eye region 
became more defined. Upon reaching the 100th it-
eration, the generated image displayed a clear eye 
image. Subsequently, details gradually emerged 
throughout subsequent iterations. Ultimately, be-
yond iteration 180, the generated image exhibited a 
compelling outcome, as depicted in Figure 7.

Once fully trained, the GANs were assigned the 
task of generating synthetic images for each class 
equals 200% of the number of images, in relation 
to the number of each subset of the dataset. These 
generated images were then merged with the imag-
es from the original dataset to create eight distinct 
composite datasets, each characterized by a vary-
ing ratio of synthetic to authentic images (i.e., 25%, 
50%, 75%, 100%, 125%, 150%, 175%, and 200%). 

Classification results

The objective of this experiment was to set 
a basic classification accuracy for future stud-
ies. Three dropout probabilities were examined: 
0%, 25%, and 50%, aligning with the probabili-
ties detailed in the traditional augmentation sec-
tion. The outcomes are illustrated in Figure 8. 
The top-performing model (i.e., without drop-
out) obtained an accuracy of 72.20%, serving as 
the “baseline” for future iterations. Introducing 
dropout seemed to degrade the model’s perfor-
mance by approximately 4%.

Upon setting the initial performance bench-
mark, the subsequent phase entailed examining 
the impact of integrating conventional augmenta-
tion methods on the efficacy of the models. Used 
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Figure 6. DCGAN loss (top) and density (bottom) on retinitis pigmentosa dataset

Figure 7. GAN iterations
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methods are described is section related to tradi-
tional augmentation techniques and Figure 5. As il-
lustrated in Figure 9, the comparative performance 
of two distinct models, one incorporating a 25% 
dropout rate and the other devoid of dropout, was 
analysed using the enhanced dataset. The non-
dropout model demonstrated higher performance 
than the others, however, its application may not 
be as wide due to the potential advantages of regu-
larization in scenarios involving imperfect data.

Contrary to the expectation that augmen-
tation often increases model capabilities, the 
current study observed that only when a small 
amount (25%) of the augmentation data and no 
dropout was used, the baseline was exceeded. 
This can be attributed to the rigorous nature of 
OCT image formatting, where even minimal 
magnification interventions can have a detri-
mental effect on the classification process. The 
efficiency of the best model in this part of the 

research was 72.89%. Moreover, the augmen-
tation process seemingly worsens the model’s 
ability to converge consistently, as reflected by 
the pronounced fluctuations in the performance 
curves depicted in Figure 9. The primary objec-
tive of this study was to assess the performance 
of a VGG16 with XGBoost classifier trained on 
a dataset enhanced with GAN-generated images. 
To identify the optimal quantity of synthetic im-
ages to include in the original dataset, eight ex-
periments were conducted, as detailed in Section 
about GAN augmentation. The results of these 
experiments are illustrated in Figure 10.

Every run outperforms the baseline, demon-
strating that GANs can serve as effective data 
augmentors, even in scenarios where traditional 
augmentation techniques fall short. The optimal 
ratio of 75% achieves a score almost 19% higher 
than the baseline. Additionally, using GAN-gen-
erated images for data augmentation does not 

Figure 8. VGG16 with XGBoost trained without augmentation methods. Obtained results will be used 
as a reference point for further studies

Figure 9. VGG16 with XGBoost trained with traditional augmentation techniques. Two distinct network 
architectures were analysed across two varying values of p. The dash, grey line in the graph 

signifies the baseline (72.20%) established in the prior experiment
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significantly impact on model convergence, un-
like traditional augmentation techniques.

Despite the increased dataset size, nearly all 
models converged by epoch 80. In contrast, most 
traditional data augmentation runs (Fig. 11) failed 
to converge even after 100 epochs. The ideal ra-
tio appears to be between 75% and 125%, with 
the highest score of 91.17% was obtained by the 
model trained with a 75% fake/real ratio.

Finally, the combination of traditional and 
DCGAN-based augmentation methods was evalu-
ated. The optimal model in this instance featured 
a 25% dropout rate and a 125% fake-to-real ratio, 
achieved a score of 88.34%. Unlike previous exper-
iments, dropout proved beneficial in this scenario. 
Figure 11 illustrates the models trained with a 25% 
dropout rate, p = 25%, across eight different fake-
to-real ratios. As shown in Figure 12, the models 

incorporating a 25% dropout rate performed mar-
ginally better than those without dropout.

Table 1 shows a comparison of classification 
results when the training set is augmented with 
images generated using DCGAN and DCGAN 
combined with traditional augmentation tech-
niques. Eight distinct datasets were analysed, 
each with varying levels of synthetic images and 
a 25% dropout function applied during training.

Comparison with the state-of-the-art

GANs are increasingly used in the process of 
eye disease detection. They are particularly used 
to enlarge data sets in order to generate synthetic 
images that reliably represent the disease and its 
stages. These data are then utilized to train clas-
sifiers to improve their efficiency. Selected types 

Figure 11. VGG16 with XGBoost trained with DCGAN and traditional augmentation techniques. Eight distinct 
datasets were analysed with different level of fake images and 25% dropout function and p=0.25. The dash, grey 

line in the graph signifies the baseline (72.20%)

Figure 10. VGG16 with XGBoost trained with DCGAN augmentation techniques. Eight distinct datasets were 
analysed with different level of fake images and no dropout function. The dash, grey line in the graph signifies 

the baseline (72.20%)
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of GANs and their applications are summarized 
in Table 2. A great majority of studies have been 
conducted on fundus images from various data 
sets. Depending on their type, the kinds of GAN 
used and ML methods, the efficiency of over 78% 
was achieved. These studies gathered in Table 2 
contain different ratios of original to synthetic im-
ages. For fundus images, the best detection result 
was obtained for identify various stages of diabetic 
retinopathy using GAN-RCNN, achieving an ac-
curacy of 99%. Similarly, in the case of detecting 
retinal vascular occlusions, using Few-Sample 
Generator, the efficiency was obtained above 
86.30%-100% depending on the dataset used. In 
the case of studies on OCT images, the efficiency 
was obtained above 79% for counterfactual GAN.

In this paper, the authors proposed the DC-
GAN method to augment the fundus images 
dataset. As a classification method, the VGG16 
with XGBoost was proposed, obtaining high ac-
curacy, 91.17%, for detecting RP, CORD and 
healthy cases. This is the only study comparing 
to these presented in Table 2, which concerns 
this rare disease. In this case, GAN methods are 
highly effective in generating synthetic images 

and improving the detection performance. The 
authors performed an extensive analysis, which 
proved that GAN methods are more effective in 
classifying the disease than traditional augmen-
tation methods. Moreover, the effect of dropout 
on accuracy was investigated. To the best of the 
authors’ knowledge, the ML method in the form 
of VGG with XGBoost was used for the first time 
for this type of disease.

DISCUSSION AND CONCLUSIONS

There are many methods of preparing im-
age data for classification purposes, from simple 
methods that remove distortions [61], to process-
ing using the Fourier transform [62] or the wave-
let transform [36, 65].

The article discusses the rapid advancements 
in computer vision, particularly driven by deep 
learning techniques, with a focus on achieving 
state-of-the-art performance through increas-
ingly deep and complex models. Moreover, the 
importance of medical datasets containing im-
ages of rare diseases is highlighted as well as 

Figure 12. VGG16 with XGBoost trained with DCGAN and traditional augmentation techniques. Two tests for 
no dropout and 25% dropout with p=0.25 were conducted for 8 datasets represent different fake to real images 
ratio. The thick line represents the mean value, while shaded area was made by the minimum and maximum 

values achieved in each epoch. The dash, grey line in the graph signifies the baseline (72.20%)

Table 1. Comparison of classification results (accuracy in %) while augmenting the training set with images 
acquired using DCGAN and DCGAN with traditional augmentation techniques (DCGAN with TA). Eight distinct 
datasets were analysed with different levels of fake images and 25% dropout function. 

Augmentation method
Percentage of artificially generated data

25% 50% 75% 100% 125% 150% 175% 200%

DCGAN 83.19 85.83 91.17 90.74 91.09 78.39 77.42 80.11

DCGAN with TA 86.08 85.39 87.17 87.74 88.34 87.39 84.12 85.31
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Table 2. State-of-the art of GAN augmentation for medical images datasets (AF – affine, PX – pixel-level) 
Augmentation 

method Data type Improvement [%] Classification 
accuracy [%] Purpose References

StyleGAN2-ADA Fundus images – 78.00–81.00 Enhance AMD 
detection [14]

ProGAN Fundus images – 82.92–91.12 Enlarge dataset [19]

GAN-BIGRU Fundus images – 98.50 Diabetic retinopathy 
detection [26]

GAN-RCNN Fundus images – 99.00 Identify various stages 
of diabetic retinopathy [27]

Few-Sample 
Generator Fundus images – 86.30–100 Detect retinal vascular

occlusions [18]

Counterfactual 
GAN OCT images – 65.80–79.70

Visualize the 
individual

course of retinal aging
[22]

GAN PET-MR brain images 10.45 74.00 Alzheimer disease 
classification [40]

GAN MR brain images 7.07 86.30 Alzheimer disease 
classification [41]

GAN MR brain images 11.60 83.49 Alzheimer disease 
classification [32]

GAN MR brain images 3.20 92.00 Cancer classification [42]

GAN Coronary angioscopy
images 5.19 81.00 Heart disease 

classification [43]

DCGAN Ultrasound scan image 21.43 85.00 Heart disease 
classification [44]

GAN-PX-AF X-ray lung images 14.47 91.00 Pneumothoax 
classification [45]

AF-GAN Computed Tomography
and X-ray lung images 8.79 99.00 Covid-19 classification [46]

AF-PX-GAN Computed Tomography
lung images 8.41 82.50 Cancer classification [47]

AF-GAN Computed Tomography
lung images 22.87 81.20 Cancer classification [48]

Custom GAN Computed Tomography
lung images 2.93 95.00 Nodule classification [49]

Custom GAN Computed Tomography
lung images 5.48 68.71 Cancer classification [50]

GAN Computed Tomography
lung images 8.91 92.10 Nodule classification [51]

GAN - AF X-ray lung images 3.11 83.00 Pneumothoax 
classification [52]

GAN X-ray lung images 2.23 94.10 Pneumothorax and 
Covid-19 classification [53]

GAN Computed Tomography
lung images 11.01 68.71 Cancer classification [54]

GAN Mammography images 11.25 87.00 Cancer classification [55]

AF-GAN Mammography images 6.81 94.00 Cancer classification [56]

GAN Computed Tomography
breast images 17.27 86.90 Cancer classification [57]

Custom GAN Ultrasound scan breast 
images 1.92 90.40 Cancer classification [58]

GAN - AF Mammography images 6.49 88.90 Cancer classification [59]

Custom GAN Eye fundus images 4.00 78.00 Eye diseases 
classification [60]

DiaGAN-CNN Eye fundus images 1.0-2.0 98.00 Eye diseases 
classification [63]

DC-GAN Eye fundus images 2.0-6.86 93.80-98.66 Eye diabetic 
retinopathy [64]

Custom GAN Eye fundus images 18.97 91.17 Retinitis pigmentosa
classification Own
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the augmentation of medical images using deep 
convolutional generative adversarial networks 
(DCGAN) to improve dataset quality and clas-
sification accuracy. In studies taking into ac-
count enlarged datasets, a noticeable increase 
in classification accuracy is achieved compared 
to the initial studies. The top-performing mod-
el, without dropout, achieved an accuracy of 
72.20%, serving as the baseline for future itera-
tions. Introducing dropout in the models seemed 
to degrade performance by approximately 4%. 
The study observed that the optimal ratio of syn-
thetic images to real images was 75%, resulting 
in a score almost 19% higher than the baseline 
accuracy, reaching 91.17%. Using GAN-gener-
ated images for data augmentation did not sig-
nificantly impact model convergence, unlike 
traditional augmentation techniques. The com-
bined augmentation method of traditional and 
DCGAN-based techniques, with a 25% dropout 
rate and a 125% fake-to-real ratio, achieved a 
score of 88.34%, demonstrating the synergistic 
effect of both augmentation approaches. Mod-
els trained with the proposed GAN augmenta-
tion methodology outperformed those trained 
with traditional augmentation techniques by a 
large margin, showcasing the effectiveness of 
GAN-based augmentation for improving clas-
sification accuracy in medical image datasets. 
These results highlight the success and implica-
tions of the study’s methodology in enhancing 
the performance of machine learning models 
for medical image analysis, particularly in the 
context of rare eye diseases. The study faced the 
challenge of working with a small real dataset 
due to the nature of rare diseases, in contrast 
to other datasets focusing on retinal diseases. 
Despite the limited size of the real dataset, the 
augmentation techniques, including the use of 
DCGAN and traditional augmentation methods, 
were effective in improving classification ac-
curacy and model performance. In the rapidly 
evolving landscape of healthcare, the signifi-
cance of data-driven decision-making cannot be 
overstated. Medical data classification, a critical 
aspect of modern healthcare analytics, hinges on 
the availability of high-quality, diverse datasets. 
These datasets empower machine learning mod-
els to identify patterns, predict outcomes, and 
ultimately, enhance patient care. However, ob-
taining sufficient medical data for training these 
models presents formidable challenges, includ-
ing issues of privacy, data scarcity, and the need 

for labelled data. In response to these challeng-
es, data generation techniques have emerged as 
a pivotal solution. This article delves into the 
methodologies, applications, and implications of 
data generation for medical data classification, 
exploring how synthetic data are transform-
ing the healthcare industry by bridging the gap 
between data scarcity and the growing demand 
for accurate, reliable medical insights especially 
in rare eye diseases classification. The Table 2 
presents a brief summary of the article related 
to the generation of medical data, along with in-
formation on the classification tools and the ob-
tained improvement in results.

Based on the results presented in Table 2, it 
can be concluded that the proposed method sig-
nificantly enhances the efficiency of retinitis pig-
mentosa (RP) classification. The developed solu-
tion is among the leading approaches in terms of 
both improvement and accuracy. It is important 
to acknowledge that retinitis pigmentosa is a rare 
disease, which limited the dataset available for 
this study, unlike the larger datasets used in stud-
ies such as [44, 48]. Despite this, only marginally 
better results were obtained in those studies. It is 
reasonable to assume that expanding the dataset 
of RP images will lead to further improvements 
in image quality and, consequently, in classifica-
tion accuracy. It should be noted that the com-
monly available VGG-16 model was employed 
for classification, with adaptations specifically 
for retinitis pigmentosa images. The develop-
ment of a dedicated model tailored to this task 
is likely to yield even greater improvements in 
classification quality.

Potential limitations

One of the observed limitations is the poten-
tial risk of overfitting due to the use of synthetic 
data generated by the DCGAN. Overfitting oc-
curs when a model learns patterns specific to 
the training data, including noise and artifacts, 
which may not generalize well to new, unseen 
data. The high accuracy achieved might partly 
reflect the model’s proficiency in distinguishing 
between real and synthetic images rather than 
capturing the underlying features of retinitis 
pigmentosa.

Moreover, the synthetic images produced 
by the DCGAN, while visually similar to real 
images, may not encompass the full variability 
present in real-world clinical data. This could 
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introduce biases, as the GAN might replicate 
existing biases in the original dataset, such as 
underrepresentation of disease variations. Con-
sequently, the model’s performance might not 
be consistent across diverse patient populations, 
potentially limiting its generalizability.

Therefore, it would be necessary to expand 
the existing set of OCT classes and ensure the ef-
fectiveness of the model.

While we report a significant improvement 
in classification accuracy – surpassing the 90% 
threshold and improving baseline accuracy by 
almost 19% – the clinical relevance of this en-
hancement requires further exploration. In medi-
cal diagnostics, even small improvements in ac-
curacy can have substantial impacts on patient 
outcomes. However, it is crucial to assess wheth-
er this improvement translates into better diag-
nostic decisions, earlier detection, or improved 
patient management for retinitis pigmentosa. 
Additionally, factors such as the false-positive 
and false-negative rates need to be evaluated, as 
they have direct implication.

The use of synthetic data in medical imaging 
raises ethical and regulatory considerations. En-
suring patient privacy is essential to maintained, 
but it is equally important to verify that models 
trained on synthetic data do not inadvertently in-
corporate biases or inaccuracies that could affect 
patient care. Regulatory bodies may require thor-
ough validation of such models before they can 
be implemented in clinical settings.

Despite the above-mentioned limitations, it 
should be emphasized that models trained with 
DCGAN-augmented data exhibited more stable 
convergence during training compared to those 
trained with traditional augmentation methods. 
This stability suggests that the synthetic data 
generated by the DCGAN aligns well with the 
underlying data distribution, facilitating more 
efficient learning. The convergence was gener-
ally achieved around the 80th epoch, indicating 
that the model could effectively learn from the 
augmented dataset without requiring excessive 
training time.

The application of dropout did not consistent-
ly improve model performance. In some cases, 
models without dropout achieved higher accu-
racy. This observation may indicate that, with the 
enriched dataset provided by DCGAN augmenta-
tion, the risk of overfitting was reduced, and the 
regularization effect of dropout became less criti-
cal. Alternatively, dropout may have impeded the 

model’s ability to learn from the complex patterns 
present in the augmented data.

The substantial improvement in classification 
accuracy has important implications for the detec-
tion of retinitis pigmentosa. Improved diagnostic 
tools can aid ophthalmologists in identifying this 
rare disease earlier and more accurately, potentially 
leading to better patient counselling and manage-
ment. Additionally, the methodology demonstrated 
in this study can be applied to other rare diseases 
where data scarcity is a significant hurdle.

Future directions

To address limitations mentioned before, future 
research should focus on several aspects:
	• External validation: Testing the model on in-

dependent datasets from different populations 
to evaluate its generalizability and robustness. 

	• Bias mitigation: Implementing techniques to 
detect and mitigate biases in synthetic data 
generation, such as incorporating fairness con-
straints in the GAN training process. 

	• Clinical impact assessment: Collaborating with 
clinicians to assess the practical utility of the 
model, including its integration into diagnostic 
workflows and its impact on patient outcomes. 

	• Comparison with other methods: Benchmark-
ing the proposed approach against other ad-
vanced models, such as deep ensemble net-
works, attention mechanisms, or transformer-
based architectures.

Moreover, a future study may include experi-
ments with architectures more sophisticated GAN 
frameworks such as auxiliary classifier GANs, 
CycleGAN or Progressive Growing GANs to 
further improve data quality and experimen-
tal performance. Subsequent tests may include 
comparative studies to evaluate the performance 
of different augmentation techniques on various 
types of medical image datasets, exploring the 
strengths and limitations of each approach in dif-
ferent clinical scenarios. Moreover, future work 
should aim to increase the number of collected 
retinitis pigmentosa images from real patients ob-
tained from other collaborating research centres.

Overall, the article demonstrates the potential 
of GAN-based augmentation in improving the 
quality and accuracy of classification of medical 
image datasets for rare diseases, paving the way 
for future research in enhancing machine learning 
algorithms for healthcare applications.
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