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Abstract

Real-time three-dimensional (3D) pose estimation is of high interest in interac-
tive applications, virtual reality, activity recognition, and most importantly, in
the growing gaming industry. In this work, we present a method that captures
and reconstructs the 3D skeletal pose and motion articulation of multiple char-
acters using a monocular RGB camera. Our method deals with this challenging,
but useful, task by taking advantage of the recent development in deep learn-
ing that allows two-dimensional (2D) pose estimation of multiple characters and
the increasing availability of motion capture data. We fit 2D estimated poses,
extracted from a single camera via OpenPose, with a 2D multiview joint projec-
tions database that is associated with their 3D motion representations. We then
retrieve the 3D body pose of the tracked character, ensuring throughout that the
reconstructed movements are natural, satisfy the model constraints, are within
a feasible set, and are temporally smooth without jitters. We demonstrate the
performance of our method in several examples, including human locomotion,
simultaneously capturing of multiple characters, and motion reconstruction
from different camera views.
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1 INTRODUCTION

Motion capture (mocap) is the technological process used for acquiring three-dimensional (3D) position and orientation
information of a moving object. Despite recent advances in mocap technology, which allows high-quality acquisition and
portrayal of movements, common capture systems are cost demanding and require a setup of capturing devices that is
not accessible to the general public, especially for home use. Recently, scholars have turned their attention in using more
affordable technologies such as RGB or depth cameras. Capturing and reconstructing the motion of multiple characters
using single, monocular cameras have a wide spectrum of applications in surveillance, human-computer interaction,
activity recognition, behavioral analysis, and virtual reality. It is also of high interest in the growing gaming industry,
where users require cost-effective and easy configurable systems for real-time human-machine interaction. Real-time
pose estimation and 3D motion reconstruction using data only from a single RGB camera is, however, a challenging task.
This is because skeletal pose estimation, using such sparse data, is a highly underconstrained problem. A human pose is
usually represented and parameterized by a set of joint positions and rotations, where its heterogeneous, dynamic, and
highly versatile nature, as well as the changes in camera viewpoint, makes motion reconstruction a difficult job.
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Most papers in the literature estimate the human pose in two-dimensional (2D) for one or multiple characters by local-
izing joint keypoints in pixel space1,2 or by extracting the shape silhouette and then retrieving the closest neighbor from a
database.3–5 More recently, and with the advent of deep learning (DL), the community has been moving to learning-based
discriminative methods, where the effectiveness of 2D human pose estimation has greatly improved.6–8 The 3D skele-
tal reconstruction, though, is a much harder problem.9,10 Even though there are methods that are effective at 3D pose
reconstruction, they are usually not real-time implementable and suffer from depth and scale ambiguities. In addition,
the reconstructed motion is temporally inconsistent and unstable because they treat each frame independently and do
not employ bone length constraints. The big challenge in this context is to learn rich features to encode depth, spatial and
temporal relation of the body parts so as to ensure smooth motion reconstruction.11,12 While some recent methods run
at high frame (e.g., other works11,13), they are still unsuitable for use in closely interactive characters or crowds. This is
because they require a tracked bounding box for each person, and thus, they can only reconstruct the motion of a single
person at a time.

The novel contribution of this paper, in principle, is that it fits 2D deep estimated poses, taken from a single, monocular
camera, with the 2D multiview joint projections of 3D motion data, to retrieve the 3D body pose of the tracked character.
Our method takes advantage of the recent advances in deep and convolutional networks that allow 2D pose estimation of
multiple characters and the large (and increasing) availability of mocap data. More particularly, our method infers the 3D
human poses in real time using only data from a single video stream. To deal with the limitations of the prior work such as
the bone length constraints violations, the simultaneously capturing of multiple characters, and the temporal consistency
of the reconstructed skeletons, we generate a database with numerous 2D projections by rotating a small angle at a time,
the yaw axis of 3D skeletons. Then, we match the input 2D poses (which are extracted from a single video stream using
the OpenPose network8) with the projections on the database and retrieve the best 3D skeleton pose that is temporally
consistent to the skeleton of the previous frames, producing natural and smooth motion.

Our approach is capable of estimating the posture of multiple characters in real time, whereas the reconstructed pose
is always within a natural and feasible set. The performance of our method in reconstructing 3D articulated motion from
2D poses is demonstrated in several examples, including video streams taken from different points of view and using
multiple characters in the scene.

2 RELATED WORK

There has been a growing demand in recent years for realistic 3D animation in media and entertainment, as well as
for research and training purposes. 3D motion acquisition can be roughly categorized as being achieved either using
marker-based or marker-less mocap systems.

Marker-based systems are generally producing high-quality, realistic animations and are mainly used by the movies
and entertainment industries. They use fiduciary markers, which are attached near each joint to identify motion, and they
provide real-time acquisition of labeled or algorithmically tracked data to reconstruct the subjects' articulated motion.
More specifically, they utilize data captured from special markers (passive and active) to triangulate the 3D position of a
subject inferred from a number of high-speed cameras.14,15 The main strengths of optical systems are their high acquisition
accuracy, speed, and high sample rate capture. However, optical hardware is expensive, intrusive by nature, and lacks
portability; calibration is needed for precise application of the markers, whereas extensive and tedious manual effort is
required to recover the misapplied or (self-)occluded markers.16,17

More recently, a number of autonomous systems have been developed that use a variety of sensors such as inertial
measurement units (IMUs).18–20 Inertial mocap technology uses a number of gyroscopes and accelerometers to measure
rotational rates, while these rotations are translated to a skeleton model. Inertial systems do not require external cameras
to capture the sensors, and thus, they are portable and functional in outdoor environments. Nevertheless, marker-based
systems are costly and, thus, not suitable for home use and, more particularly, for interactive applications or gaming.

In general, there is a tendency to reduce the required equipment and the objects attached to the body for motion tracking
and reconstruction. One way to deal with sparse data is to model the trajectories of the end effectors and then apply
kinematics models to fill in the gaps.21,22 The most popular way, though, is the use of marker-less systems (or vision
systems) that are becoming more and more popular because they are easy to set up, have low cost, and are less intrusive,
meaning that subjects are not required to wear special equipment for tracking. Usually, the subject's silhouette is captured
from a single or multiple angles using a number of vision or RGB-depth cameras.23,24 A voxel representation of the body is
extracted over time, while animation is achieved by fitting a skeleton into the 3D model; see other works for example.25–29
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These approaches can be broadly classified into discriminative, generative, and hybrid approaches. Generative methods
reconstruct human pose by fitting a template model to the observed data.30,31 Discriminative methods infer mode-to-depth
correspondences and cluster pixels to hypothesize body joint positions, fit a model, and then track the skeleton.32,33 Hybrid
methods use a combination of the aforementioned techniques to achieve higher accuracy.34 Other works also include
methods for motion capturing using an architecture of multiple color-depth sensors to better deal with occlusions or
unobserved view angles.35,36

Skeletal pose estimation from a single camera is a much harder problem; the problem has been tackled by localizing
the joint keypoint positions in pixel space1,2 or by extracting the shape silhouette and then retrieving the closest neighbor
from a database.3–5 For a recent overview of 3D pose estimations, refer to the work of Sarafianos et al.37

More recently, DL has brought revolutionary advances in computer vision and graphics, including efficient methods
for pose estimation. Learning-based discriminative methods are quite popular for the real-time 2D pose estimation of
single or multiple characters.6–8,38 More recently, a number of methods have tackled a much harder problem, that of 3D
skeletal estimation from single color images or videos.9,10,13,39–41 A common limitation of the discriminative methods in
3D pose reconstruction, though, is that they typically run off-line, and because they do not take into consideration the
temporal consistency of motion (they reconstruct the 3D joint positions on per image), the generated motion is oscillat-
ing. Moreover, they are restricted to the viewpoints learned from the training data,42 while they suffer from depth and
scale ambiguities. The problem of different camera views can be dealt by training the network to predict the same pose
using images from multiple views.43,44 Another major limitation is that the reconstructed 3D pose is not assigned on a
character model (3D joint positions are estimated independently) to enforce kinematic constraints, resulting in tempo-
ral bone length violations. The methods in the works of Mehta et al.11 and Martinez et al. (VNect)12 animate a modeled
character, work in real time, and produce smooth animations in terms of their temporal coherence. However, because
they require each character to be tracked by a bounding box, they only reconstruct single-person skeletons at a time, mak-
ing them unsuitable for closely interacting characters. More recently, an enormous effort has been devoted to deep and
convolutional methods that map all human pixels of an RGB image to 3D surface of the human body.45–48

Our method overcomes most of the prior work limitations, including the 3D capturing of multiple characters, the
skeletal model constraints, and the production of smooth animation for the articulated character.

3 METHOD OVERVIEW

Our approach for motion reconstruction can be decomposed into two main parts: (a) the preprocessing step, where a 2D
pose database is defined by mocap data projections, and its entries are associated with 3D skeletons, and (b) the run-time
step, where 2D joint positions extracted from a video are matched to the 2D pose projections database in order to recover
the 3D skeleton and reconstruct the motion.

More specifically, as a first step, we retarget motion data taken from an online mocap database49 into a universal skele-
ton format, and then compute the 2D projections of the 3D skeleton from many different views. The 2D projections are
associated with their 3D skeletons and their viewing information, and stored in a database. The 2D projections are there-
after grouped into mutually exclusive clusters, and for each cluster, we allocate a representative pose. Then, in the second
stage, for an input frame taken from a video stream, we extract in real time its 2D pose using the OpenPose network.8
The 2D pose is then rescaled so as to be consistent with the 2D projections stored in the database. We select the k-best
matches from the database to the input 2D pose and retrieve their 3D skeletons. To achieve smooth reconstruction of the
articulated motion, we select the 3D skeleton from the k-matched projections that is temporally consistent to the previous
frame.

4 MOTION DATABASE

The first step of our method, in a preprocessing time, is to define a pose database that will be used to retrieve the 3D pose
estimates. We used a small data set 𝔇 of mocap data in the biovision hierarchy format (.bvh), taken from the Carnegie
Mellon University (CMU) mocap library49 (see Figure 1). The human poses in these CMU 3D data are represented by
n = 30 joint positions and rotations. In our work, we use 2D poses that are estimated from an input monocular video using
OpenPose8 (see Section 5 for more details) that are represented by m = 14 joint locations (see Figure 1). Thus, in order
to have a uniform and comparable skeleton, we retarget the CMU .bvh data to a 3D skeleton that its projection in T-pose
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FIGURE 1 A number of skeleton sequences used in our data set 𝔇, taken from the Carnegie Mellon University (CMU) motion capture
library

FIGURE 2 Multiview skeleton projection. For each frame, we rotate the three-dimensional (3D) skeleton by an angle 𝜃 at a time on the
yaw axis and create two-dimensional (2D) projections

matches the 2D skeleton (in T-pose) returned by OpenPose (see Figure 2 for the new skeleton); the 2D pose projections are
then scaled so as their bounding box remains constant over time. This step is crucial because we will compare pixelwise
the joint locations of the 2D skeletons joint by joint.

In order to make our method invariant to the camera view and robust against fine-grained pose variations, for each
frame, we compute the 2D projections of the 3D skeleton rotated by an angle 𝜃 at a time (𝜃 = 12o) on the yaw axis, resulting
in total to 30 projections per frame. The main idea is to assign for each 3D pose multiple 2D projection representation from
many different camera viewpoints and is illustrated in Figure 2. Each 2D projection is then associated with its 3D skeleton
(pointed to its frame on the .bvh animation) by indexing the corresponding frame on the animation and its rotation angle.
Note that, in this work, we place the camera at 1.5 meters above earth plane (common height for video recording), and
similarly, we project the 3D skeletons assuming that the camera is at the same height.

To allow fast skeleton indexing and retrieval, we position the 2D pose projections into d-dimensional space using mul-
tidimensional scaling (MDS)50; we tried different dimensionalities, Rd, and the quality of embedding seems to be equally
well for 2 ≤ d ≤ 5. The distance metric used to compute the distance between the 2D skeletal projections is defined as

disti𝑗 =
m∑

k=1
d(pk,qk), (1)

where m is the number of joints and pk, qk ∈ R2 are the joint positions of the two skeletons i and j. The term d(pk,qk)
represents the Euclidean norm between the two joint positions.

2D projection representations in Rd are then grouped into mutually exclusive clusters. We use the k-means clustering
algorithm to create clusters that are separated by similar characteristics. For each cluster, we also define a representative
pose that is the one closest to the centroid of the cluster. Figure 3 portrays the 2D poses of five selected clusters and their
representative skeletons. As can be seen, our database is rich enough and each pose has a lot of repetitions with a big
variation of different poses.
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FIGURE 3 Five selected clusters with their representatives. The projected poses with the smallest distance to the centroid are placed
nearest to the center, and as we move further from the center, the poses are less correlated to the centroid

5 MOTION RECONSTRUCTION

For an input video stream, we use OpenPose to estimate, in real time, the 2D pose of the characters. OpenPose is a
bottom-up approach that uses Part Affinity Fields, a set of 2D vector fields that encodes the location and orientation of
limbs over the image domain, offering robustness to early commitment. It offers state-of-the-art accuracy; it returns the
2D key points of the joints for multiple articulated characters at the same time, but most importantly, it decouples runtime
complexity from the number of people in the image, achieving low computational cost.

In this project, we assume that the character's skeleton is fully visible at the camera. Because the 2D joint locations
are inferred from a video, the size of the estimated pose is depended on the size of the tracked character (e.g., adult or
child), and its depth (e.g., how far or near is to the camera). To deal with this size ambiguity and be consistent with the 2D
projections stored in the database, we introduce a scaling step. For each OpenPose 2D pose, we export its bounding box
and rescale it so as the height of the bounding box remains constant over time. Figure 4 shows a sequence of 2D poses of
a walking character moving closer to the camera (the size of its pose increases over time), as inferred by OpenPose and
its rescaled pose that its size remains constant over time.

Having the rescaled 2D pose from OpenPose, we then need to search and retrieve the nearest pose to the entry from the
projections database, and associate it with its corresponding 3D skeleton. However, one of the main challenges to deal
with is that multiple 3D poses may correspond to the same 2D pose after projection. This introduces severe ambiguities
in 3D pose estimation. Moreover, applying per-frame pose estimation on a motion sequence does not ensure temporal
consistency of motion, and small pose inaccuracies lead to temporal jitter and motion oscillations. We dealt with these

FIGURE 4 Scaling the OpenPose two-dimensional (2D) pose estimation to ensure comparison consistency
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FIGURE 5 To ensure temporal consistency in motion, for each candidate skeleton, we compare its w previous frames in the original
animation (shown in red) with the w previously reconstructed skeletons (shown in blue) and then select the candidate skeleton that its
previous frames return the smallest average distance (highlighted box)

challenges in two steps. First, we compare the entry pose with the cluster representations and then select the i = 5 closest
clusters with the smallest Euclidean distance (see Equation 1) between the input pose and their representative. Note that
searching on a single cluster is not a good idea because there is no guarantee that the closest representative contains
the closest projection for our entry. For each of those i clusters, we retrieve the j = 10 nearest poses projections. Then,
by taking advantage of the property that motion is locally linear, we retrieve the 3D skeleton that is temporally more
consistent to the reconstructed poses of the previous frames. More particularly, for each of the l = i×j selected nearest pose
projections, we extract their associated 3D skeleton (their temporal location is pointed to the .bvh animation). Thereafter,
we compare the 3D skeletons of their w previous frames (we empirically conclude that w = 4 is enough for retrieving the
most temporally consistent skeleton), in the .bvh animation, with the w previously reconstructed skeletons (each of the
w skeletons is weighted differently), and select the one that its w previous frames have the smallest average distance (see
Figure 5 for a visual explanation). To compute the distances between the 3D skeletons, we use the Lee et al.51 distance
metric, which is the sum of the difference in rotation between joints. The distance between two skeletons is defined as

dist2
i𝑗 =

m∑
k=1

‖‖‖‖log
(

q−1
𝑗,kqi,k

)‖‖‖‖
2
, (2)

where m is the number of joints and qi,k, q𝑗,k ∈ S3 are the complex forms of the quaternion for the kth joint of the two
skeletons i and j, respectively. The log-norm term || log(q−1

𝑗,kqi,k)||2 represents the geodesic norm in quaternion space, which
yields the distance from qi,k to qj,k on S3. The retrieved 3D skeleton is placed at the current frame, in the animation, after
it is rotated by an angle 𝜃 in the yaw axis.

Finally, apart from retrieving the pose that is more related to the previous frames, in order to remove unwanted oscilla-
tion, we additionally smooth the reconstructed 3D motion using real-time filtering, for example, the Savitzky–Golay52 or
the 1 € filter.53 The filtering is applied on the joint rotations (represented in Euler angles) of the 3D skeleton. Motion data
are further edited, again in real time, using FBBIK54 to avoid common synthesis artifacts such as foot sliding and floor
penetration. It is important to note here that, by retrieving existing 3D skeletons, we ensure that bone length are constant
over time, a common limitation of prior work in 2D and 3D pose estimation. The data were transformed into .bvh format
that includes absolute root position and orientation of the relative joint angles.

6 RESULTS AND DISCUSSION

In this section, we demonstrate the performance of our method in reconstructing 3D skeletons from RGB video sequences.
We first provide the implementation details and its computational performance, and then present several experiments
that illustrate the effectiveness of our work.
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6.1 Implementation details
We have implemented our system in the Unity game engine using C#. All experiments were run on a six-core PC with
Intel i7-6850 K at 3.6GHz, 32 GB of RAM, and nVIDIA Titan XP GPU. We created a 2D projection database using the 3D
mocap data taken from the CMU mocap library. These data were originally sampled at 120 frames per second (fps), but
because human motion is locally linear and in order to reduce the computational cost, we resample it to 24 fps without
much loss of the temporal information (see the work of Forbes et al.55). In our experiments, we only used a small data set
of different actions, in total 5 min of motion (72,000 frames). Because for each frame we extract 30 projections (rotated by
an angle 𝜃 = 12o on the yaw axis), our 2D projection database 𝔇 consists in total with 216,000 pose projections. Selecting
the right number of clusters for organizing 𝔇 is very important because it will allow fast indexing and searching of poses,
but it will also guarantee the quality of motion retrieval. We empirically concluded that our clusters are compact for
roughly K = 500; we ended up at this number of clusters by increasing their number until the mean distance between the
skeletons of each cluster and its centroid do not change more than 1%.

Our method requires approximately 12 hr to compute the distance matrix between the poses and to create the pose
embedding, 14 hr for dimensionality reduction and 15 minutes for the pose clustering (in MATLAB R2018b). Although
this process is time consuming, it is only required once at a preprocessing time. Once it is done, 3D motion retrieval is fast
and performed in real time (see the supplementary video for a live demonstration). There are several factors that affect
the runtime, but also the quality of the reconstructed animation, for example, the size of the database (bulkier 𝔇 means
larger variety of movements, thus better reconstruction quality, but it requires higher computational cost; this is mainly
because of the complexity in matrix computation and MDS), the rotation angle for the projections (again, more frequent
projections will increase the quality at the cost of higher computational cost).

6.2 Evaluation
We conducted several experiments to evaluate the performance of our method. Figure 6a visualizes the 3D pose recon-
struction on several motion examples, including walking, boxing, jumping, and running. Figure 6b illustrates the
corresponding results for multiple, closely interactive characters. Similarly, Figure 6c shows the effectiveness of our
method in tracking and capturing motion that is temporally coherent. It can be observed that the 3D skeletons of the
articulated motion are smoothly reconstructed over time.

To quantitatively evaluate the performance of our method, we animated a .bvh file (that is not part of our database)
using a virtual character and then reconstruct its articulated motion (see Figure 7). We then computed the difference

FIGURE 6 Three-dimensional (3D) skeleton reconstruction of various different frames for (a) single character and (b) multiple interactive
characters in the scene. The RGB video frames are shown on the left side of the figure with the 2D pose estimations overlaid, as returned by
OpenPose; in the middle is the best match from our 2D pose projections database to the input pose; and on the right is our 3D skeleton
reconstructions. (c) Smooth motion reconstruction in a sequence of skeletons
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FIGURE 7 Three-dimensional (3D) motion reconstruction on virtually animated motion capture (mocap) data

FIGURE 8 Three-dimensional (3D) pose reconstruction of the same action recorded from different angles. The arrow shows the same
pose but rotated to be aligned and visually comparable with the pose from the other view

between the poses of the original and reconstructed characters; the average Euclidean distance between their joints is
only 9.4 cm (for a character with height 175 cm). Please refer to our supplementary video for an overlay comparison of the
two skeletons. We further evaluated the effectiveness of our method in pose reconstruction by recording the same action
from two different viewing angles and then reconstructing their 3D motion. Again, we computed the average Euclidean
distance between the two 3D skeletons per joint, that is, 12.6 cm at recordings with different angle views approximately
135◦ and 6.8 cm for 75◦. Similarly, the corresponding distance for the filtered VNect reconstruction is 16.4 cm and 15.2 cm,
respectively. Note that, for the comparison between the two poses, we discard the translation and rotation of the root joint
so as to fairly compare the two 3D poses. Figure 8 illustrates the two 3D poses from different angles. For a side-by-side
animated comparison of the two 3D skeletons, please refer to our accompanied video.

Results demonstrate the effectiveness of our method in reconstructing, at real time, the articulated motion in various
different actions, in video streams taken from different points of view, virtually generated videos, and using single or
multiple characters in the scene. At the same time, our method ensures the smoothness and temporal consistency of
motion, and that the character's bone length constraints are not violated.

7 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

We have presented a method that estimates, in real time, the 3D pose of a human character using a single, monocular
camera and reconstructs its articulated motion. Our method is capable of tracking and reconstructing multiple 3D human
postures at the same time, ensuring that the estimated 3D poses satisfy the character's bone constraints and are always
within a natural and feasible set. Common prior work limitations were efficiently dealt such as the temporal consistency
of poses and the production of smooth and linear motion. We have evaluated the performance of our method in several
examples, including a large variety of locomotion with single and multiple characters in the scene, on data taken from



YIANNAKIDES ET AL. 9 of 12

different points of view, artificially generated data, and so forth; our results demonstrate the efficiency of the proposed
approach.

Our method has some limitations. First, the accuracy of the 2D joint estimation can greatly affect our method's 3D
estimation performance. This is more obvious at the hand and feet joints, which are more vulnerable to noise. There
are two ways to overcome this limitation: (a) one way is to use a weighted distance metric and enforce less influence
(see Equation 2) on these joints, or (b) to use an architecture of two or more cameras for a better 2D pose estimation.
Moreover, in our work, we assume that the character's skeleton is fully visible at the camera; however, this is not always
possible due to occlusions from other characters or objects in the scene. Future work will see the introduction of a pose
recovery method that selects the most appropriate skeleton, from the database, and matches with the sparse data.

A second limitation lies on the camera's projection angle, which must match the view angle of the camera. A possi-
ble way to make our system invariant to different camera viewpoints is to further extend the database with additional
projections on different axis, different height (view), or camera parameters. 3D pose interpolations will be employed to
match the 3D keypoints so as to enable 3D pose detection with different camera configurations. Nevertheless, learning
the camera viewpoint to improve 3D pose estimation is currently an active and challenging topic in computer vision.56

Another limitation of our method is that the results are highly related to the training data. A larger variety of movements
will increase the variety of reconstructed actions, but at the same time, it will increase the computational cost. Finally,
because there is no calibration of the scene, our method is not trained to account for global translation and rotation. In
future work, scene calibration and root translations will be added.
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